feat(backend): Add Celery worker infrastructure with task stubs
- Add Celery app configuration with Redis broker/backend - Add task modules: agent, workflow, cost, git, sync - Add task stubs for: - Agent execution (spawn, heartbeat, terminate) - Workflow orchestration (start sprint, checkpoint, code review) - Cost tracking (record usage, calculate, generate report) - Git operations (clone, commit, push, sync) - External sync (import issues, export updates) - Add task tests directory structure - Configure for production-ready Celery setup Implements #18 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
150
backend/app/tasks/agent.py
Normal file
150
backend/app/tasks/agent.py
Normal file
@@ -0,0 +1,150 @@
|
||||
# app/tasks/agent.py
|
||||
"""
|
||||
Agent execution tasks for Syndarix.
|
||||
|
||||
These tasks handle the lifecycle of AI agent instances:
|
||||
- Spawning new agent instances from agent types
|
||||
- Executing agent steps (LLM calls, tool execution)
|
||||
- Terminating agent instances
|
||||
|
||||
Tasks are routed to the 'agent' queue for dedicated processing.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from app.celery_app import celery_app
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@celery_app.task(bind=True, name="app.tasks.agent.run_agent_step")
|
||||
def run_agent_step(
|
||||
self,
|
||||
agent_instance_id: str,
|
||||
context: dict[str, Any],
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Execute a single step of an agent's workflow.
|
||||
|
||||
This task performs one iteration of the agent loop:
|
||||
1. Load agent instance state
|
||||
2. Call LLM with context and available tools
|
||||
3. Execute tool calls if any
|
||||
4. Update agent state
|
||||
5. Return result for next step or completion
|
||||
|
||||
Args:
|
||||
agent_instance_id: UUID of the agent instance
|
||||
context: Current execution context including:
|
||||
- messages: Conversation history
|
||||
- tools: Available tool definitions
|
||||
- state: Agent state data
|
||||
- metadata: Project/task metadata
|
||||
|
||||
Returns:
|
||||
dict with status and agent_instance_id
|
||||
"""
|
||||
logger.info(
|
||||
f"Running agent step for instance {agent_instance_id} with context keys: {list(context.keys())}"
|
||||
)
|
||||
|
||||
# TODO: Implement actual agent step execution
|
||||
# This will involve:
|
||||
# 1. Loading agent instance from database
|
||||
# 2. Calling LLM provider (via litellm or anthropic SDK)
|
||||
# 3. Processing tool calls through MCP servers
|
||||
# 4. Updating agent state in database
|
||||
# 5. Scheduling next step if needed
|
||||
|
||||
return {
|
||||
"status": "pending",
|
||||
"agent_instance_id": agent_instance_id,
|
||||
}
|
||||
|
||||
|
||||
@celery_app.task(bind=True, name="app.tasks.agent.spawn_agent")
|
||||
def spawn_agent(
|
||||
self,
|
||||
agent_type_id: str,
|
||||
project_id: str,
|
||||
initial_context: dict[str, Any],
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Spawn a new agent instance from an agent type.
|
||||
|
||||
This task creates a new agent instance:
|
||||
1. Load agent type configuration (model, expertise, personality)
|
||||
2. Create agent instance record in database
|
||||
3. Initialize agent state with project context
|
||||
4. Start first agent step
|
||||
|
||||
Args:
|
||||
agent_type_id: UUID of the agent type template
|
||||
project_id: UUID of the project this agent will work on
|
||||
initial_context: Starting context including:
|
||||
- goal: High-level objective
|
||||
- constraints: Any limitations or requirements
|
||||
- assigned_issues: Issues to work on
|
||||
- autonomy_level: FULL_CONTROL, MILESTONE, or AUTONOMOUS
|
||||
|
||||
Returns:
|
||||
dict with status, agent_type_id, and project_id
|
||||
"""
|
||||
logger.info(
|
||||
f"Spawning agent of type {agent_type_id} for project {project_id}"
|
||||
)
|
||||
|
||||
# TODO: Implement agent spawning
|
||||
# This will involve:
|
||||
# 1. Loading agent type from database
|
||||
# 2. Creating agent instance record
|
||||
# 3. Setting up MCP tool access
|
||||
# 4. Initializing agent state
|
||||
# 5. Kicking off first step
|
||||
|
||||
return {
|
||||
"status": "spawned",
|
||||
"agent_type_id": agent_type_id,
|
||||
"project_id": project_id,
|
||||
}
|
||||
|
||||
|
||||
@celery_app.task(bind=True, name="app.tasks.agent.terminate_agent")
|
||||
def terminate_agent(
|
||||
self,
|
||||
agent_instance_id: str,
|
||||
reason: str,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Terminate an agent instance.
|
||||
|
||||
This task gracefully shuts down an agent:
|
||||
1. Mark agent instance as terminated
|
||||
2. Save final state for audit
|
||||
3. Release any held resources
|
||||
4. Notify relevant subscribers
|
||||
|
||||
Args:
|
||||
agent_instance_id: UUID of the agent instance
|
||||
reason: Reason for termination (completion, error, manual, budget)
|
||||
|
||||
Returns:
|
||||
dict with status and agent_instance_id
|
||||
"""
|
||||
logger.info(
|
||||
f"Terminating agent instance {agent_instance_id} with reason: {reason}"
|
||||
)
|
||||
|
||||
# TODO: Implement agent termination
|
||||
# This will involve:
|
||||
# 1. Loading agent instance
|
||||
# 2. Updating status to terminated
|
||||
# 3. Saving termination reason
|
||||
# 4. Cleaning up any pending tasks
|
||||
# 5. Sending termination event
|
||||
|
||||
return {
|
||||
"status": "terminated",
|
||||
"agent_instance_id": agent_instance_id,
|
||||
}
|
||||
Reference in New Issue
Block a user