feat(memory): integrate memory system with context engine (#97)

## Changes

### New Context Type
- Add MEMORY to ContextType enum for agent memory context
- Create MemoryContext class with subtypes (working, episodic, semantic, procedural)
- Factory methods: from_working_memory, from_episodic_memory, from_semantic_memory, from_procedural_memory

### Memory Context Source
- MemoryContextSource service fetches relevant memories for context assembly
- Configurable fetch limits per memory type
- Parallel fetching from all memory types

### Agent Lifecycle Hooks
- AgentLifecycleManager handles spawn, pause, resume, terminate events
- spawn: Initialize working memory with optional initial state
- pause: Create checkpoint of working memory
- resume: Restore from checkpoint
- terminate: Consolidate working memory to episodic memory
- LifecycleHooks for custom extension points

### Context Engine Integration
- Add memory_query parameter to assemble_context()
- Add session_id and agent_type_id for memory scoping
- Memory budget allocation (15% by default)
- set_memory_source() for runtime configuration

### Tests
- 48 new tests for MemoryContext, MemoryContextSource, and lifecycle hooks
- All 108 memory-related tests passing
- mypy and ruff checks passing

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-05 03:49:22 +01:00
parent 0b24d4c6cc
commit 30e5c68304
13 changed files with 2509 additions and 6 deletions

View File

@@ -0,0 +1,19 @@
# app/services/memory/integration/__init__.py
"""
Memory Integration Module.
Provides integration between the agent memory system and other Syndarix components:
- Context Engine: Memory as context source
- Agent Lifecycle: Spawn, pause, resume, terminate hooks
"""
from .context_source import MemoryContextSource, get_memory_context_source
from .lifecycle import AgentLifecycleManager, LifecycleHooks, get_lifecycle_manager
__all__ = [
"AgentLifecycleManager",
"LifecycleHooks",
"MemoryContextSource",
"get_lifecycle_manager",
"get_memory_context_source",
]

View File

@@ -0,0 +1,402 @@
# app/services/memory/integration/context_source.py
"""
Memory Context Source.
Provides agent memory as a context source for the Context Engine.
Retrieves relevant memories based on query and converts them to MemoryContext objects.
"""
import logging
from dataclasses import dataclass
from datetime import UTC, datetime, timedelta
from typing import Any
from uuid import UUID
from sqlalchemy.ext.asyncio import AsyncSession
from app.services.context.types.memory import MemoryContext
from app.services.memory.episodic import EpisodicMemory
from app.services.memory.procedural import ProceduralMemory
from app.services.memory.semantic import SemanticMemory
from app.services.memory.working import WorkingMemory
logger = logging.getLogger(__name__)
@dataclass
class MemoryFetchConfig:
"""Configuration for memory fetching."""
# Limits per memory type
working_limit: int = 10
episodic_limit: int = 10
semantic_limit: int = 15
procedural_limit: int = 5
# Time ranges
episodic_days_back: int = 30
min_relevance: float = 0.3
# Which memory types to include
include_working: bool = True
include_episodic: bool = True
include_semantic: bool = True
include_procedural: bool = True
@dataclass
class MemoryFetchResult:
"""Result of memory fetch operation."""
contexts: list[MemoryContext]
by_type: dict[str, int]
fetch_time_ms: float
query: str
class MemoryContextSource:
"""
Source for memory context in the Context Engine.
This service retrieves relevant memories based on a query and
converts them to MemoryContext objects for context assembly.
It coordinates between all memory types (working, episodic,
semantic, procedural) to provide a comprehensive memory context.
"""
def __init__(
self,
session: AsyncSession,
embedding_generator: Any | None = None,
) -> None:
"""
Initialize the memory context source.
Args:
session: Database session
embedding_generator: Optional embedding generator for semantic search
"""
self._session = session
self._embedding_generator = embedding_generator
# Lazy-initialized memory services
self._episodic: EpisodicMemory | None = None
self._semantic: SemanticMemory | None = None
self._procedural: ProceduralMemory | None = None
async def _get_episodic(self) -> EpisodicMemory:
"""Get or create episodic memory service."""
if self._episodic is None:
self._episodic = await EpisodicMemory.create(
self._session,
self._embedding_generator,
)
return self._episodic
async def _get_semantic(self) -> SemanticMemory:
"""Get or create semantic memory service."""
if self._semantic is None:
self._semantic = await SemanticMemory.create(
self._session,
self._embedding_generator,
)
return self._semantic
async def _get_procedural(self) -> ProceduralMemory:
"""Get or create procedural memory service."""
if self._procedural is None:
self._procedural = await ProceduralMemory.create(
self._session,
self._embedding_generator,
)
return self._procedural
async def fetch_context(
self,
query: str,
project_id: UUID,
agent_instance_id: UUID | None = None,
agent_type_id: UUID | None = None,
session_id: str | None = None,
config: MemoryFetchConfig | None = None,
) -> MemoryFetchResult:
"""
Fetch relevant memories as context.
This is the main entry point for the Context Engine integration.
It searches across all memory types and returns relevant memories
as MemoryContext objects.
Args:
query: Search query for finding relevant memories
project_id: Project scope
agent_instance_id: Optional agent instance scope
agent_type_id: Optional agent type scope (for procedural)
session_id: Optional session ID (for working memory)
config: Optional fetch configuration
Returns:
MemoryFetchResult with contexts and metadata
"""
config = config or MemoryFetchConfig()
start_time = datetime.now(UTC)
contexts: list[MemoryContext] = []
by_type: dict[str, int] = {
"working": 0,
"episodic": 0,
"semantic": 0,
"procedural": 0,
}
# Fetch from working memory (session-scoped)
if config.include_working and session_id:
try:
working_contexts = await self._fetch_working(
query=query,
session_id=session_id,
project_id=project_id,
agent_instance_id=agent_instance_id,
limit=config.working_limit,
)
contexts.extend(working_contexts)
by_type["working"] = len(working_contexts)
except Exception as e:
logger.warning(f"Failed to fetch working memory: {e}")
# Fetch from episodic memory
if config.include_episodic:
try:
episodic_contexts = await self._fetch_episodic(
query=query,
project_id=project_id,
agent_instance_id=agent_instance_id,
limit=config.episodic_limit,
days_back=config.episodic_days_back,
)
contexts.extend(episodic_contexts)
by_type["episodic"] = len(episodic_contexts)
except Exception as e:
logger.warning(f"Failed to fetch episodic memory: {e}")
# Fetch from semantic memory
if config.include_semantic:
try:
semantic_contexts = await self._fetch_semantic(
query=query,
project_id=project_id,
limit=config.semantic_limit,
min_relevance=config.min_relevance,
)
contexts.extend(semantic_contexts)
by_type["semantic"] = len(semantic_contexts)
except Exception as e:
logger.warning(f"Failed to fetch semantic memory: {e}")
# Fetch from procedural memory
if config.include_procedural:
try:
procedural_contexts = await self._fetch_procedural(
query=query,
project_id=project_id,
agent_type_id=agent_type_id,
limit=config.procedural_limit,
)
contexts.extend(procedural_contexts)
by_type["procedural"] = len(procedural_contexts)
except Exception as e:
logger.warning(f"Failed to fetch procedural memory: {e}")
# Sort by relevance
contexts.sort(key=lambda c: c.relevance_score, reverse=True)
fetch_time = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.debug(
f"Fetched {len(contexts)} memory contexts for query '{query[:50]}...' "
f"in {fetch_time:.1f}ms"
)
return MemoryFetchResult(
contexts=contexts,
by_type=by_type,
fetch_time_ms=fetch_time,
query=query,
)
async def _fetch_working(
self,
query: str,
session_id: str,
project_id: UUID,
agent_instance_id: UUID | None,
limit: int,
) -> list[MemoryContext]:
"""Fetch from working memory."""
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id) if agent_instance_id else None,
)
contexts: list[MemoryContext] = []
all_keys = await working.list_keys()
# Filter keys by query (simple substring match)
query_lower = query.lower()
matched_keys = [k for k in all_keys if query_lower in k.lower()]
# If no query match, include all keys (working memory is always relevant)
if not matched_keys and query:
matched_keys = all_keys
for key in matched_keys[:limit]:
value = await working.get(key)
if value is not None:
contexts.append(
MemoryContext.from_working_memory(
key=key,
value=value,
source=f"working:{session_id}",
query=query,
)
)
return contexts
async def _fetch_episodic(
self,
query: str,
project_id: UUID,
agent_instance_id: UUID | None,
limit: int,
days_back: int,
) -> list[MemoryContext]:
"""Fetch from episodic memory."""
episodic = await self._get_episodic()
# Search for similar episodes
episodes = await episodic.search_similar(
project_id=project_id,
query=query,
limit=limit,
agent_instance_id=agent_instance_id,
)
# Also get recent episodes if we didn't find enough
if len(episodes) < limit // 2:
since = datetime.now(UTC) - timedelta(days=days_back)
recent = await episodic.get_recent(
project_id=project_id,
limit=limit,
since=since,
)
# Deduplicate by ID
existing_ids = {e.id for e in episodes}
for ep in recent:
if ep.id not in existing_ids:
episodes.append(ep)
if len(episodes) >= limit:
break
return [
MemoryContext.from_episodic_memory(ep, query=query)
for ep in episodes[:limit]
]
async def _fetch_semantic(
self,
query: str,
project_id: UUID,
limit: int,
min_relevance: float,
) -> list[MemoryContext]:
"""Fetch from semantic memory."""
semantic = await self._get_semantic()
facts = await semantic.search_facts(
query=query,
project_id=project_id,
limit=limit,
min_confidence=min_relevance,
)
return [
MemoryContext.from_semantic_memory(fact, query=query)
for fact in facts
]
async def _fetch_procedural(
self,
query: str,
project_id: UUID,
agent_type_id: UUID | None,
limit: int,
) -> list[MemoryContext]:
"""Fetch from procedural memory."""
procedural = await self._get_procedural()
procedures = await procedural.find_matching(
context=query,
project_id=project_id,
agent_type_id=agent_type_id,
limit=limit,
)
return [
MemoryContext.from_procedural_memory(proc, query=query)
for proc in procedures
]
async def fetch_all_working(
self,
session_id: str,
project_id: UUID,
agent_instance_id: UUID | None = None,
) -> list[MemoryContext]:
"""
Fetch all working memory for a session.
Useful for including entire session state in context.
Args:
session_id: Session ID
project_id: Project scope
agent_instance_id: Optional agent instance scope
Returns:
List of MemoryContext for all working memory items
"""
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id) if agent_instance_id else None,
)
contexts: list[MemoryContext] = []
all_keys = await working.list_keys()
for key in all_keys:
value = await working.get(key)
if value is not None:
contexts.append(
MemoryContext.from_working_memory(
key=key,
value=value,
source=f"working:{session_id}",
)
)
return contexts
# Factory function
async def get_memory_context_source(
session: AsyncSession,
embedding_generator: Any | None = None,
) -> MemoryContextSource:
"""Create a memory context source instance."""
return MemoryContextSource(
session=session,
embedding_generator=embedding_generator,
)

View File

@@ -0,0 +1,629 @@
# app/services/memory/integration/lifecycle.py
"""
Agent Lifecycle Hooks for Memory System.
Provides memory management hooks for agent lifecycle events:
- spawn: Initialize working memory for new agent instance
- pause: Checkpoint working memory state
- resume: Restore working memory from checkpoint
- terminate: Consolidate session to episodic memory
"""
import logging
from collections.abc import Callable, Coroutine
from dataclasses import dataclass, field
from datetime import UTC, datetime
from typing import Any
from uuid import UUID
from sqlalchemy.ext.asyncio import AsyncSession
from app.services.memory.episodic import EpisodicMemory
from app.services.memory.types import EpisodeCreate, Outcome
from app.services.memory.working import WorkingMemory
logger = logging.getLogger(__name__)
@dataclass
class LifecycleEvent:
"""Event data for lifecycle hooks."""
event_type: str # spawn, pause, resume, terminate
project_id: UUID
agent_instance_id: UUID
agent_type_id: UUID | None = None
session_id: str | None = None
timestamp: datetime = field(default_factory=lambda: datetime.now(UTC))
metadata: dict[str, Any] = field(default_factory=dict)
@dataclass
class LifecycleResult:
"""Result of a lifecycle operation."""
success: bool
event_type: str
message: str | None = None
data: dict[str, Any] = field(default_factory=dict)
duration_ms: float = 0.0
# Type alias for lifecycle hooks
LifecycleHook = Callable[[LifecycleEvent], Coroutine[Any, Any, None]]
class LifecycleHooks:
"""
Collection of lifecycle hooks.
Allows registration of custom hooks for lifecycle events.
Hooks are called after the core memory operations.
"""
def __init__(self) -> None:
"""Initialize lifecycle hooks."""
self._spawn_hooks: list[LifecycleHook] = []
self._pause_hooks: list[LifecycleHook] = []
self._resume_hooks: list[LifecycleHook] = []
self._terminate_hooks: list[LifecycleHook] = []
def on_spawn(self, hook: LifecycleHook) -> LifecycleHook:
"""Register a spawn hook."""
self._spawn_hooks.append(hook)
return hook
def on_pause(self, hook: LifecycleHook) -> LifecycleHook:
"""Register a pause hook."""
self._pause_hooks.append(hook)
return hook
def on_resume(self, hook: LifecycleHook) -> LifecycleHook:
"""Register a resume hook."""
self._resume_hooks.append(hook)
return hook
def on_terminate(self, hook: LifecycleHook) -> LifecycleHook:
"""Register a terminate hook."""
self._terminate_hooks.append(hook)
return hook
async def run_spawn_hooks(self, event: LifecycleEvent) -> None:
"""Run all spawn hooks."""
for hook in self._spawn_hooks:
try:
await hook(event)
except Exception as e:
logger.warning(f"Spawn hook failed: {e}")
async def run_pause_hooks(self, event: LifecycleEvent) -> None:
"""Run all pause hooks."""
for hook in self._pause_hooks:
try:
await hook(event)
except Exception as e:
logger.warning(f"Pause hook failed: {e}")
async def run_resume_hooks(self, event: LifecycleEvent) -> None:
"""Run all resume hooks."""
for hook in self._resume_hooks:
try:
await hook(event)
except Exception as e:
logger.warning(f"Resume hook failed: {e}")
async def run_terminate_hooks(self, event: LifecycleEvent) -> None:
"""Run all terminate hooks."""
for hook in self._terminate_hooks:
try:
await hook(event)
except Exception as e:
logger.warning(f"Terminate hook failed: {e}")
class AgentLifecycleManager:
"""
Manager for agent lifecycle and memory integration.
Handles memory operations during agent lifecycle events:
- spawn: Creates new working memory for the session
- pause: Saves working memory state to checkpoint
- resume: Restores working memory from checkpoint
- terminate: Consolidates working memory to episodic memory
"""
# Key prefix for checkpoint storage
CHECKPOINT_PREFIX = "__checkpoint__"
def __init__(
self,
session: AsyncSession,
embedding_generator: Any | None = None,
hooks: LifecycleHooks | None = None,
) -> None:
"""
Initialize the lifecycle manager.
Args:
session: Database session
embedding_generator: Optional embedding generator
hooks: Optional lifecycle hooks
"""
self._session = session
self._embedding_generator = embedding_generator
self._hooks = hooks or LifecycleHooks()
# Lazy-initialized services
self._episodic: EpisodicMemory | None = None
async def _get_episodic(self) -> EpisodicMemory:
"""Get or create episodic memory service."""
if self._episodic is None:
self._episodic = await EpisodicMemory.create(
self._session,
self._embedding_generator,
)
return self._episodic
@property
def hooks(self) -> LifecycleHooks:
"""Get the lifecycle hooks."""
return self._hooks
async def spawn(
self,
project_id: UUID,
agent_instance_id: UUID,
session_id: str,
agent_type_id: UUID | None = None,
initial_state: dict[str, Any] | None = None,
metadata: dict[str, Any] | None = None,
) -> LifecycleResult:
"""
Handle agent spawn - initialize working memory.
Creates a new working memory instance for the agent session
and optionally populates it with initial state.
Args:
project_id: Project scope
agent_instance_id: Agent instance ID
session_id: Session ID for working memory
agent_type_id: Optional agent type ID
initial_state: Optional initial state to populate
metadata: Optional metadata for the event
Returns:
LifecycleResult with spawn outcome
"""
start_time = datetime.now(UTC)
try:
# Create working memory for the session
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id),
)
# Populate initial state if provided
items_set = 0
if initial_state:
for key, value in initial_state.items():
await working.set(key, value)
items_set += 1
# Create and run event hooks
event = LifecycleEvent(
event_type="spawn",
project_id=project_id,
agent_instance_id=agent_instance_id,
agent_type_id=agent_type_id,
session_id=session_id,
metadata=metadata or {},
)
await self._hooks.run_spawn_hooks(event)
duration_ms = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.info(
f"Agent {agent_instance_id} spawned with session {session_id}, "
f"initial state: {items_set} items"
)
return LifecycleResult(
success=True,
event_type="spawn",
message="Agent spawned successfully",
data={
"session_id": session_id,
"initial_items": items_set,
},
duration_ms=duration_ms,
)
except Exception as e:
logger.error(f"Spawn failed for agent {agent_instance_id}: {e}")
return LifecycleResult(
success=False,
event_type="spawn",
message=f"Spawn failed: {e}",
)
async def pause(
self,
project_id: UUID,
agent_instance_id: UUID,
session_id: str,
checkpoint_id: str | None = None,
metadata: dict[str, Any] | None = None,
) -> LifecycleResult:
"""
Handle agent pause - checkpoint working memory.
Saves the current working memory state to a checkpoint
that can be restored later with resume().
Args:
project_id: Project scope
agent_instance_id: Agent instance ID
session_id: Session ID
checkpoint_id: Optional checkpoint identifier
metadata: Optional metadata for the event
Returns:
LifecycleResult with checkpoint data
"""
start_time = datetime.now(UTC)
checkpoint_id = checkpoint_id or f"checkpoint_{int(start_time.timestamp())}"
try:
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id),
)
# Get all current state
all_keys = await working.list_keys()
# Filter out checkpoint keys
state_keys = [k for k in all_keys if not k.startswith(self.CHECKPOINT_PREFIX)]
state: dict[str, Any] = {}
for key in state_keys:
value = await working.get(key)
if value is not None:
state[key] = value
# Store checkpoint
checkpoint_key = f"{self.CHECKPOINT_PREFIX}{checkpoint_id}"
await working.set(
checkpoint_key,
{
"state": state,
"timestamp": start_time.isoformat(),
"keys_count": len(state),
},
ttl_seconds=86400 * 7, # Keep checkpoint for 7 days
)
# Run hooks
event = LifecycleEvent(
event_type="pause",
project_id=project_id,
agent_instance_id=agent_instance_id,
session_id=session_id,
metadata={**(metadata or {}), "checkpoint_id": checkpoint_id},
)
await self._hooks.run_pause_hooks(event)
duration_ms = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.info(
f"Agent {agent_instance_id} paused, checkpoint {checkpoint_id} "
f"saved with {len(state)} items"
)
return LifecycleResult(
success=True,
event_type="pause",
message="Agent paused successfully",
data={
"checkpoint_id": checkpoint_id,
"items_saved": len(state),
"timestamp": start_time.isoformat(),
},
duration_ms=duration_ms,
)
except Exception as e:
logger.error(f"Pause failed for agent {agent_instance_id}: {e}")
return LifecycleResult(
success=False,
event_type="pause",
message=f"Pause failed: {e}",
)
async def resume(
self,
project_id: UUID,
agent_instance_id: UUID,
session_id: str,
checkpoint_id: str,
clear_current: bool = True,
metadata: dict[str, Any] | None = None,
) -> LifecycleResult:
"""
Handle agent resume - restore from checkpoint.
Restores working memory state from a previously saved checkpoint.
Args:
project_id: Project scope
agent_instance_id: Agent instance ID
session_id: Session ID
checkpoint_id: Checkpoint to restore from
clear_current: Whether to clear current state before restoring
metadata: Optional metadata for the event
Returns:
LifecycleResult with restore outcome
"""
start_time = datetime.now(UTC)
try:
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id),
)
# Get checkpoint
checkpoint_key = f"{self.CHECKPOINT_PREFIX}{checkpoint_id}"
checkpoint = await working.get(checkpoint_key)
if checkpoint is None:
return LifecycleResult(
success=False,
event_type="resume",
message=f"Checkpoint '{checkpoint_id}' not found",
)
# Clear current state if requested
if clear_current:
all_keys = await working.list_keys()
for key in all_keys:
if not key.startswith(self.CHECKPOINT_PREFIX):
await working.delete(key)
# Restore state from checkpoint
state = checkpoint.get("state", {})
items_restored = 0
for key, value in state.items():
await working.set(key, value)
items_restored += 1
# Run hooks
event = LifecycleEvent(
event_type="resume",
project_id=project_id,
agent_instance_id=agent_instance_id,
session_id=session_id,
metadata={**(metadata or {}), "checkpoint_id": checkpoint_id},
)
await self._hooks.run_resume_hooks(event)
duration_ms = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.info(
f"Agent {agent_instance_id} resumed from checkpoint {checkpoint_id}, "
f"restored {items_restored} items"
)
return LifecycleResult(
success=True,
event_type="resume",
message="Agent resumed successfully",
data={
"checkpoint_id": checkpoint_id,
"items_restored": items_restored,
"checkpoint_timestamp": checkpoint.get("timestamp"),
},
duration_ms=duration_ms,
)
except Exception as e:
logger.error(f"Resume failed for agent {agent_instance_id}: {e}")
return LifecycleResult(
success=False,
event_type="resume",
message=f"Resume failed: {e}",
)
async def terminate(
self,
project_id: UUID,
agent_instance_id: UUID,
session_id: str,
task_description: str | None = None,
outcome: Outcome = Outcome.SUCCESS,
lessons_learned: list[str] | None = None,
consolidate_to_episodic: bool = True,
cleanup_working: bool = True,
metadata: dict[str, Any] | None = None,
) -> LifecycleResult:
"""
Handle agent termination - consolidate to episodic memory.
Consolidates the session's working memory into an episodic memory
entry, then optionally cleans up the working memory.
Args:
project_id: Project scope
agent_instance_id: Agent instance ID
session_id: Session ID
task_description: Description of what was accomplished
outcome: Task outcome (SUCCESS, FAILURE, PARTIAL)
lessons_learned: Optional list of lessons learned
consolidate_to_episodic: Whether to create episodic entry
cleanup_working: Whether to clear working memory
metadata: Optional metadata for the event
Returns:
LifecycleResult with termination outcome
"""
start_time = datetime.now(UTC)
try:
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id),
)
# Gather session state for consolidation
all_keys = await working.list_keys()
state_keys = [k for k in all_keys if not k.startswith(self.CHECKPOINT_PREFIX)]
session_state: dict[str, Any] = {}
for key in state_keys:
value = await working.get(key)
if value is not None:
session_state[key] = value
episode_id: str | None = None
# Consolidate to episodic memory
if consolidate_to_episodic:
episodic = await self._get_episodic()
description = task_description or f"Session {session_id} completed"
episode_data = EpisodeCreate(
project_id=project_id,
agent_instance_id=agent_instance_id,
session_id=session_id,
task_type="session_completion",
task_description=description[:500],
outcome=outcome,
outcome_details=f"Session terminated with {len(session_state)} state items",
actions=[
{
"type": "session_terminate",
"state_keys": list(session_state.keys()),
"outcome": outcome.value,
}
],
context_summary=str(session_state)[:1000] if session_state else "",
lessons_learned=lessons_learned or [],
duration_seconds=0.0, # Unknown at this point
tokens_used=0,
importance_score=0.6, # Moderate importance for session ends
)
episode = await episodic.record_episode(episode_data)
episode_id = str(episode.id)
# Clean up working memory
items_cleared = 0
if cleanup_working:
for key in all_keys:
await working.delete(key)
items_cleared += 1
# Run hooks
event = LifecycleEvent(
event_type="terminate",
project_id=project_id,
agent_instance_id=agent_instance_id,
session_id=session_id,
metadata={**(metadata or {}), "episode_id": episode_id},
)
await self._hooks.run_terminate_hooks(event)
duration_ms = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.info(
f"Agent {agent_instance_id} terminated, session {session_id} "
f"consolidated to episode {episode_id}"
)
return LifecycleResult(
success=True,
event_type="terminate",
message="Agent terminated successfully",
data={
"episode_id": episode_id,
"state_items_consolidated": len(session_state),
"items_cleared": items_cleared,
"outcome": outcome.value,
},
duration_ms=duration_ms,
)
except Exception as e:
logger.error(f"Terminate failed for agent {agent_instance_id}: {e}")
return LifecycleResult(
success=False,
event_type="terminate",
message=f"Terminate failed: {e}",
)
async def list_checkpoints(
self,
project_id: UUID,
agent_instance_id: UUID,
session_id: str,
) -> list[dict[str, Any]]:
"""
List available checkpoints for a session.
Args:
project_id: Project scope
agent_instance_id: Agent instance ID
session_id: Session ID
Returns:
List of checkpoint metadata dicts
"""
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id),
)
all_keys = await working.list_keys()
checkpoints: list[dict[str, Any]] = []
for key in all_keys:
if key.startswith(self.CHECKPOINT_PREFIX):
checkpoint_id = key[len(self.CHECKPOINT_PREFIX):]
checkpoint = await working.get(key)
if checkpoint:
checkpoints.append({
"checkpoint_id": checkpoint_id,
"timestamp": checkpoint.get("timestamp"),
"keys_count": checkpoint.get("keys_count", 0),
})
# Sort by timestamp (newest first)
checkpoints.sort(
key=lambda c: c.get("timestamp", ""),
reverse=True,
)
return checkpoints
# Factory function
async def get_lifecycle_manager(
session: AsyncSession,
embedding_generator: Any | None = None,
hooks: LifecycleHooks | None = None,
) -> AgentLifecycleManager:
"""Create a lifecycle manager instance."""
return AgentLifecycleManager(
session=session,
embedding_generator=embedding_generator,
hooks=hooks,
)