- Cleaned up unnecessary comments in `__all__` definitions for better readability.
- Adjusted indentation and formatting across modules for improved clarity (e.g., long lines, logical grouping).
- Simplified conditional expressions and inline comments for context scoring and ranking.
- Replaced some hard-coded values with type-safe annotations (e.g., `ClassVar`).
- Removed unused imports and ensured consistent usage across test files.
- Updated `test_score_not_cached_on_context` to clarify caching behavior.
- Improved truncation strategy logic and marker handling.
- Replace hard-coded limits with configurable settings (e.g., cache memory size, truncation strategy, relevance settings).
- Optimize parallel execution in token counting, scoring, and reranking for source diversity.
- Improve caching logic:
- Add per-context locks for safe parallel scoring.
- Reuse precomputed fingerprints for cache efficiency.
- Make truncation, scoring, and ranker behaviors fully configurable via settings.
- Add support for middle truncation, context hash-based hashing, and dynamic token limiting.
- Refactor methods for scalability and better error handling.
Tests: Updated all affected components with additional test cases.
Add TokenCalculator with LLM Gateway integration for accurate token
counting with in-memory caching and fallback character-based estimation.
Implement TokenBudget for tracking allocations per context type with
budget enforcement, and BudgetAllocator for creating budgets based on
model context window sizes.
- TokenCalculator: MCP integration, caching, model-specific ratios
- TokenBudget: allocation tracking, can_fit/allocate/deallocate/reset
- BudgetAllocator: model context sizes, budget creation and adjustment
- 35 comprehensive tests covering all budget functionality
Part of #61 - Context Management Engine
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>