Files
fast-next-template/backend/app/services/context/compression/truncation.py
Felipe Cardoso 1628eacf2b feat(context): enhance timeout handling, tenant isolation, and budget management
- Added timeout enforcement for token counting, scoring, and compression with detailed error handling.
- Introduced tenant isolation in context caching using project and agent identifiers.
- Enhanced budget management with stricter checks for critical context overspending and buffer limitations.
- Optimized per-context locking with cleanup to prevent memory leaks in concurrent environments.
- Updated default assembly timeout settings for improved performance and reliability.
- Improved XML escaping in Claude adapter for safety against injection attacks.
- Standardized token estimation using model-specific ratios.
2026-01-04 15:52:50 +01:00

454 lines
14 KiB
Python

"""
Smart Truncation for Context Compression.
Provides intelligent truncation strategies to reduce context size
while preserving the most important information.
"""
import logging
import re
from dataclasses import dataclass
from typing import TYPE_CHECKING
from ..config import ContextSettings, get_context_settings
from ..types import BaseContext, ContextType
if TYPE_CHECKING:
from ..budget import TokenBudget, TokenCalculator
logger = logging.getLogger(__name__)
def _estimate_tokens(text: str, model: str | None = None) -> int:
"""
Estimate token count using model-specific character ratios.
Module-level function for reuse across classes. Uses the same ratios
as TokenCalculator for consistency.
Args:
text: Text to estimate tokens for
model: Optional model name for model-specific ratios
Returns:
Estimated token count (minimum 1)
"""
# Model-specific character ratios (chars per token)
model_ratios = {
"claude": 3.5,
"gpt-4": 4.0,
"gpt-3.5": 4.0,
"gemini": 4.0,
}
default_ratio = 4.0
ratio = default_ratio
if model:
model_lower = model.lower()
for model_prefix, model_ratio in model_ratios.items():
if model_prefix in model_lower:
ratio = model_ratio
break
return max(1, int(len(text) / ratio))
@dataclass
class TruncationResult:
"""Result of truncation operation."""
original_tokens: int
truncated_tokens: int
content: str
truncated: bool
truncation_ratio: float # 0.0 = no truncation, 1.0 = completely removed
@property
def tokens_saved(self) -> int:
"""Calculate tokens saved by truncation."""
return self.original_tokens - self.truncated_tokens
class TruncationStrategy:
"""
Smart truncation strategies for context compression.
Strategies:
1. End truncation: Cut from end (for knowledge/docs)
2. Middle truncation: Keep start and end (for code)
3. Sentence-aware: Truncate at sentence boundaries
4. Semantic chunking: Keep most relevant chunks
"""
def __init__(
self,
calculator: "TokenCalculator | None" = None,
preserve_ratio_start: float | None = None,
min_content_length: int | None = None,
settings: ContextSettings | None = None,
) -> None:
"""
Initialize truncation strategy.
Args:
calculator: Token calculator for accurate counting
preserve_ratio_start: Ratio of content to keep from start (overrides settings)
min_content_length: Minimum characters to preserve (overrides settings)
settings: Context settings (uses global if None)
"""
self._settings = settings or get_context_settings()
self._calculator = calculator
# Use provided values or fall back to settings
self._preserve_ratio_start = (
preserve_ratio_start
if preserve_ratio_start is not None
else self._settings.truncation_preserve_ratio
)
self._min_content_length = (
min_content_length
if min_content_length is not None
else self._settings.truncation_min_content_length
)
@property
def truncation_marker(self) -> str:
"""Get truncation marker from settings."""
return self._settings.truncation_marker
def set_calculator(self, calculator: "TokenCalculator") -> None:
"""Set token calculator."""
self._calculator = calculator
async def truncate_to_tokens(
self,
content: str,
max_tokens: int,
strategy: str = "end",
model: str | None = None,
) -> TruncationResult:
"""
Truncate content to fit within token limit.
Args:
content: Content to truncate
max_tokens: Maximum tokens allowed
strategy: Truncation strategy ('end', 'middle', 'sentence')
model: Model for token counting
Returns:
TruncationResult with truncated content
"""
if not content:
return TruncationResult(
original_tokens=0,
truncated_tokens=0,
content="",
truncated=False,
truncation_ratio=0.0,
)
# Get original token count
original_tokens = await self._count_tokens(content, model)
if original_tokens <= max_tokens:
return TruncationResult(
original_tokens=original_tokens,
truncated_tokens=original_tokens,
content=content,
truncated=False,
truncation_ratio=0.0,
)
# Apply truncation strategy
if strategy == "middle":
truncated = await self._truncate_middle(content, max_tokens, model)
elif strategy == "sentence":
truncated = await self._truncate_sentence(content, max_tokens, model)
else: # "end"
truncated = await self._truncate_end(content, max_tokens, model)
truncated_tokens = await self._count_tokens(truncated, model)
return TruncationResult(
original_tokens=original_tokens,
truncated_tokens=truncated_tokens,
content=truncated,
truncated=True,
truncation_ratio=0.0
if original_tokens == 0
else 1 - (truncated_tokens / original_tokens),
)
async def _truncate_end(
self,
content: str,
max_tokens: int,
model: str | None = None,
) -> str:
"""
Truncate from end of content.
Simple but effective for most content types.
"""
# Binary search for optimal truncation point
marker_tokens = await self._count_tokens(self.truncation_marker, model)
available_tokens = max(0, max_tokens - marker_tokens)
# Edge case: if no tokens available for content, return just the marker
if available_tokens <= 0:
return self.truncation_marker
# Estimate characters per token (guard against division by zero)
content_tokens = await self._count_tokens(content, model)
if content_tokens == 0:
return content + self.truncation_marker
chars_per_token = len(content) / content_tokens
# Start with estimated position
estimated_chars = int(available_tokens * chars_per_token)
truncated = content[:estimated_chars]
# Refine with binary search
low, high = len(truncated) // 2, len(truncated)
best = truncated
for _ in range(5): # Max 5 iterations
mid = (low + high) // 2
candidate = content[:mid]
tokens = await self._count_tokens(candidate, model)
if tokens <= available_tokens:
best = candidate
low = mid + 1
else:
high = mid - 1
return best + self.truncation_marker
async def _truncate_middle(
self,
content: str,
max_tokens: int,
model: str | None = None,
) -> str:
"""
Truncate from middle, keeping start and end.
Good for code or content where context at boundaries matters.
"""
marker_tokens = await self._count_tokens(self.truncation_marker, model)
available_tokens = max_tokens - marker_tokens
# Split between start and end
start_tokens = int(available_tokens * self._preserve_ratio_start)
end_tokens = available_tokens - start_tokens
# Get start portion
start_content = await self._get_content_for_tokens(
content, start_tokens, from_start=True, model=model
)
# Get end portion
end_content = await self._get_content_for_tokens(
content, end_tokens, from_start=False, model=model
)
return start_content + self.truncation_marker + end_content
async def _truncate_sentence(
self,
content: str,
max_tokens: int,
model: str | None = None,
) -> str:
"""
Truncate at sentence boundaries.
Produces cleaner output by not cutting mid-sentence.
"""
# Split into sentences
sentences = re.split(r"(?<=[.!?])\s+", content)
result: list[str] = []
total_tokens = 0
marker_tokens = await self._count_tokens(self.truncation_marker, model)
available = max_tokens - marker_tokens
for sentence in sentences:
sentence_tokens = await self._count_tokens(sentence, model)
if total_tokens + sentence_tokens <= available:
result.append(sentence)
total_tokens += sentence_tokens
else:
break
if len(result) < len(sentences):
return " ".join(result) + self.truncation_marker
return " ".join(result)
async def _get_content_for_tokens(
self,
content: str,
target_tokens: int,
from_start: bool = True,
model: str | None = None,
) -> str:
"""Get portion of content fitting within token limit."""
if target_tokens <= 0:
return ""
current_tokens = await self._count_tokens(content, model)
if current_tokens <= target_tokens:
return content
# Estimate characters (guard against division by zero)
if current_tokens == 0:
return content
chars_per_token = len(content) / current_tokens
estimated_chars = int(target_tokens * chars_per_token)
if from_start:
return content[:estimated_chars]
else:
return content[-estimated_chars:]
async def _count_tokens(self, text: str, model: str | None = None) -> int:
"""Count tokens using calculator or estimation."""
if self._calculator is not None:
return await self._calculator.count_tokens(text, model)
# Fallback estimation with model-specific ratios
return _estimate_tokens(text, model)
class ContextCompressor:
"""
Compresses contexts to fit within budget constraints.
Uses truncation strategies to reduce context size while
preserving the most important information.
"""
def __init__(
self,
truncation: TruncationStrategy | None = None,
calculator: "TokenCalculator | None" = None,
) -> None:
"""
Initialize context compressor.
Args:
truncation: Truncation strategy to use
calculator: Token calculator for counting
"""
self._truncation = truncation or TruncationStrategy(calculator)
self._calculator = calculator
if calculator:
self._truncation.set_calculator(calculator)
def set_calculator(self, calculator: "TokenCalculator") -> None:
"""Set token calculator."""
self._calculator = calculator
self._truncation.set_calculator(calculator)
async def compress_context(
self,
context: BaseContext,
max_tokens: int,
model: str | None = None,
) -> BaseContext:
"""
Compress a single context to fit token limit.
Args:
context: Context to compress
max_tokens: Maximum tokens allowed
model: Model for token counting
Returns:
Compressed context (may be same object if no compression needed)
"""
current_tokens = context.token_count or await self._count_tokens(
context.content, model
)
if current_tokens <= max_tokens:
return context
# Choose strategy based on context type
strategy = self._get_strategy_for_type(context.get_type())
result = await self._truncation.truncate_to_tokens(
content=context.content,
max_tokens=max_tokens,
strategy=strategy,
model=model,
)
# Update context with truncated content
context.content = result.content
context.token_count = result.truncated_tokens
context.metadata["truncated"] = True
context.metadata["original_tokens"] = result.original_tokens
return context
async def compress_contexts(
self,
contexts: list[BaseContext],
budget: "TokenBudget",
model: str | None = None,
) -> list[BaseContext]:
"""
Compress multiple contexts to fit within budget.
Args:
contexts: Contexts to potentially compress
budget: Token budget constraints
model: Model for token counting
Returns:
List of contexts (compressed as needed)
"""
result: list[BaseContext] = []
for context in contexts:
context_type = context.get_type()
remaining = budget.remaining(context_type)
current_tokens = context.token_count or await self._count_tokens(
context.content, model
)
if current_tokens > remaining:
# Need to compress
compressed = await self.compress_context(context, remaining, model)
result.append(compressed)
logger.debug(
f"Compressed {context_type.value} context from "
f"{current_tokens} to {compressed.token_count} tokens"
)
else:
result.append(context)
return result
def _get_strategy_for_type(self, context_type: ContextType) -> str:
"""Get optimal truncation strategy for context type."""
strategies = {
ContextType.SYSTEM: "end", # Keep instructions at start
ContextType.TASK: "end", # Keep task description start
ContextType.KNOWLEDGE: "sentence", # Clean sentence boundaries
ContextType.CONVERSATION: "end", # Keep recent conversation
ContextType.TOOL: "middle", # Keep command and result summary
}
return strategies.get(context_type, "end")
async def _count_tokens(self, text: str, model: str | None = None) -> int:
"""Count tokens using calculator or estimation."""
if self._calculator is not None:
return await self._calculator.count_tokens(text, model)
# Use model-specific estimation for consistency
return _estimate_tokens(text, model)