chore(context): refactor for consistency, optimize formatting, and simplify logic

- Cleaned up unnecessary comments in `__all__` definitions for better readability.
- Adjusted indentation and formatting across modules for improved clarity (e.g., long lines, logical grouping).
- Simplified conditional expressions and inline comments for context scoring and ranking.
- Replaced some hard-coded values with type-safe annotations (e.g., `ClassVar`).
- Removed unused imports and ensured consistent usage across test files.
- Updated `test_score_not_cached_on_context` to clarify caching behavior.
- Improved truncation strategy logic and marker handling.
This commit is contained in:
2026-01-04 15:23:14 +01:00
parent 9e54f16e56
commit 2bea057fb1
26 changed files with 226 additions and 273 deletions

View File

@@ -215,9 +215,7 @@ class TokenBudget:
"buffer": self.buffer,
},
"used": dict(self.used),
"remaining": {
ct.value: self.remaining(ct) for ct in ContextType
},
"remaining": {ct.value: self.remaining(ct) for ct in ContextType},
"total_used": self.total_used(),
"total_remaining": self.total_remaining(),
"utilization": round(self.utilization(), 3),
@@ -348,13 +346,11 @@ class BudgetAllocator:
# Calculate total reclaimable (excluding prioritized types)
prioritize_values = {ct.value for ct in prioritize}
reclaimable = sum(
tokens for ct, tokens in unused.items()
if ct not in prioritize_values
tokens for ct, tokens in unused.items() if ct not in prioritize_values
)
# Redistribute to prioritized types that are near capacity
for ct in prioritize:
ct_value = ct.value
utilization = budget.utilization(ct)
if utilization > 0.8: # Near capacity

View File

@@ -7,7 +7,7 @@ Integrates with LLM Gateway for accurate counts.
import hashlib
import logging
from typing import TYPE_CHECKING, Any, Protocol
from typing import TYPE_CHECKING, Any, ClassVar, Protocol
if TYPE_CHECKING:
from app.services.mcp.client_manager import MCPClientManager
@@ -42,10 +42,10 @@ class TokenCalculator:
"""
# Default characters per token ratio for estimation
DEFAULT_CHARS_PER_TOKEN = 4.0
DEFAULT_CHARS_PER_TOKEN: ClassVar[float] = 4.0
# Model-specific ratios (more accurate estimation)
MODEL_CHAR_RATIOS: dict[str, float] = {
MODEL_CHAR_RATIOS: ClassVar[dict[str, float]] = {
"claude": 3.5,
"gpt-4": 4.0,
"gpt-3.5": 4.0,