Refactor user growth chart data model and enhance demo user creation

- Renamed `totalUsers` and `activeUsers` to `total_users` and `active_users` across frontend and backend for consistency.
- Enhanced demo user creation by randomizing `created_at` dates for realistic charts.
- Expanded demo data to include `is_active` for demo users, improving user status representation.
- Refined admin dashboard statistics to support updated user growth data model.
This commit is contained in:
Felipe Cardoso
2025-11-21 14:15:05 +01:00
parent 8c83e2a699
commit 2e4700ae9b
6 changed files with 138 additions and 53 deletions

View File

@@ -7,12 +7,14 @@ for managing the application.
"""
import logging
from datetime import datetime, timedelta
from enum import Enum
from typing import Any
from uuid import UUID
from fastapi import APIRouter, Depends, Query, status
from pydantic import BaseModel, Field
from sqlalchemy import func, select
from sqlalchemy.ext.asyncio import AsyncSession
from app.api.dependencies.permissions import require_superuser
@@ -26,8 +28,9 @@ from app.core.exceptions import (
from app.crud.organization import organization as organization_crud
from app.crud.session import session as session_crud
from app.crud.user import user as user_crud
from app.models.organization import Organization
from app.models.user import User
from app.models.user_organization import OrganizationRole
from app.models.user_organization import OrganizationRole, UserOrganization
from app.schemas.common import (
MessageResponse,
PaginatedResponse,
@@ -79,19 +82,23 @@ class BulkActionResult(BaseModel):
# ===== User Management Endpoints =====
class UserGrowthData(BaseModel):
date: str
totalUsers: int
activeUsers: int
total_users: int
active_users: int
class OrgDistributionData(BaseModel):
name: str
value: int
class UserStatusData(BaseModel):
name: str
value: int
class AdminStatsResponse(BaseModel):
user_growth: list[UserGrowthData]
organization_distribution: list[OrgDistributionData]
@@ -110,27 +117,28 @@ async def admin_get_stats(
db: AsyncSession = Depends(get_db),
) -> Any:
"""Get admin dashboard statistics."""
from sqlalchemy import func, select
from datetime import datetime, timedelta
# 1. User Growth (Last 30 days)
# Note: This is a simplified implementation. For production, consider a dedicated stats table or materialized view.
thirty_days_ago = datetime.utcnow() - timedelta(days=30)
# Get all users created in last 30 days
query = select(User).where(User.created_at >= thirty_days_ago).order_by(User.created_at)
query = (
select(User).where(User.created_at >= thirty_days_ago).order_by(User.created_at)
)
result = await db.execute(query)
recent_users = result.scalars().all()
# Get total count before 30 days
count_query = select(func.count()).select_from(User).where(User.created_at < thirty_days_ago)
result = await db.execute(count_query)
base_count = result.scalar() or 0
count_query = (
select(func.count()).select_from(User).where(User.created_at < thirty_days_ago)
)
count_result = await db.execute(count_query)
base_count = count_result.scalar() or 0
# Aggregate by day
user_growth = []
current_total = base_count
# Create a map of date -> count
daily_counts = {}
for user in recent_users:
@@ -140,31 +148,30 @@ async def admin_get_stats(
daily_counts[date_str]["total"] += 1
if user.is_active:
daily_counts[date_str]["active"] += 1
# Fill in the last 30 days
for i in range(29, -1, -1):
date = datetime.utcnow() - timedelta(days=i)
date_str = date.strftime("%b %d")
day_data = daily_counts.get(date_str, {"total": 0, "active": 0})
current_total += day_data["total"]
# For active users, we'd ideally track history, but for now let's approximate
# by just counting current active users created up to this point
# This is a simplification
active_count = current_total # Simplified
user_growth.append(UserGrowthData(
date=date_str,
totalUsers=current_total,
activeUsers=int(current_total * 0.8) # Mocking active ratio for demo visual appeal if real data lacks history
))
user_growth.append(
UserGrowthData(
date=date_str,
total_users=current_total,
active_users=int(
current_total * 0.8
), # Mocking active ratio for demo visual appeal if real data lacks history
)
)
# 2. Organization Distribution
# Get top 5 organizations by member count
from app.models.user_organization import UserOrganization
from app.models.organization import Organization
org_query = (
select(Organization.name, func.count(UserOrganization.user_id).label("count"))
.join(UserOrganization, Organization.id == UserOrganization.organization_id)
@@ -173,24 +180,28 @@ async def admin_get_stats(
.limit(5)
)
result = await db.execute(org_query)
org_dist = [OrgDistributionData(name=row.name, value=row.count) for row in result.all()]
org_dist = [
OrgDistributionData(name=row.name, value=row.count) for row in result.all()
]
# 3. User Status
active_query = select(func.count()).select_from(User).where(User.is_active == True)
inactive_query = select(func.count()).select_from(User).where(User.is_active == False)
active_query = select(func.count()).select_from(User).where(User.is_active)
inactive_query = (
select(func.count()).select_from(User).where(User.is_active.is_(False))
)
active_count = (await db.execute(active_query)).scalar() or 0
inactive_count = (await db.execute(inactive_query)).scalar() or 0
user_status = [
UserStatusData(name="Active", value=active_count),
UserStatusData(name="Inactive", value=inactive_count)
UserStatusData(name="Inactive", value=inactive_count),
]
return AdminStatsResponse(
user_growth=user_growth,
organization_distribution=org_dist,
user_status=user_status
user_status=user_status,
)