forked from cardosofelipe/fast-next-template
feat(memory): implement memory reflection service (#99)
Add reflection layer for memory system with pattern detection, success/failure factor analysis, anomaly detection, and insights generation. Enables agents to learn from past experiences and identify optimization opportunities. Key components: - Pattern detection: recurring success/failure, action sequences, temporal, efficiency - Factor analysis: action, context, timing, resource, preceding state factors - Anomaly detection: unusual duration, token usage, failure rates, action patterns - Insight generation: optimization, warning, learning, recommendation, trend insights Also fixes pre-existing timezone issues in test_types.py (datetime.now() -> datetime.now(UTC)). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -90,6 +90,9 @@ from .types import (
|
||||
WorkingMemoryItem,
|
||||
)
|
||||
|
||||
# Reflection (lazy import available)
|
||||
# Import directly: from app.services.memory.reflection import MemoryReflection
|
||||
|
||||
__all__ = [
|
||||
"CheckpointError",
|
||||
"ConsolidationStatus",
|
||||
|
||||
38
backend/app/services/memory/reflection/__init__.py
Normal file
38
backend/app/services/memory/reflection/__init__.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# app/services/memory/reflection/__init__.py
|
||||
"""
|
||||
Memory Reflection Layer.
|
||||
|
||||
Analyzes patterns in agent experiences to generate actionable insights.
|
||||
"""
|
||||
|
||||
from .service import (
|
||||
MemoryReflection,
|
||||
ReflectionConfig,
|
||||
get_memory_reflection,
|
||||
)
|
||||
from .types import (
|
||||
Anomaly,
|
||||
AnomalyType,
|
||||
Factor,
|
||||
FactorType,
|
||||
Insight,
|
||||
InsightType,
|
||||
Pattern,
|
||||
PatternType,
|
||||
TimeRange,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"Anomaly",
|
||||
"AnomalyType",
|
||||
"Factor",
|
||||
"FactorType",
|
||||
"Insight",
|
||||
"InsightType",
|
||||
"MemoryReflection",
|
||||
"Pattern",
|
||||
"PatternType",
|
||||
"ReflectionConfig",
|
||||
"TimeRange",
|
||||
"get_memory_reflection",
|
||||
]
|
||||
1440
backend/app/services/memory/reflection/service.py
Normal file
1440
backend/app/services/memory/reflection/service.py
Normal file
File diff suppressed because it is too large
Load Diff
305
backend/app/services/memory/reflection/types.py
Normal file
305
backend/app/services/memory/reflection/types.py
Normal file
@@ -0,0 +1,305 @@
|
||||
# app/services/memory/reflection/types.py
|
||||
"""
|
||||
Memory Reflection Types.
|
||||
|
||||
Type definitions for pattern detection, anomaly detection, and insights.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import UTC, datetime
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
from uuid import UUID
|
||||
|
||||
|
||||
def _utcnow() -> datetime:
|
||||
"""Get current UTC time as timezone-aware datetime."""
|
||||
return datetime.now(UTC)
|
||||
|
||||
|
||||
class PatternType(str, Enum):
|
||||
"""Types of patterns detected in episodic memory."""
|
||||
|
||||
RECURRING_SUCCESS = "recurring_success"
|
||||
RECURRING_FAILURE = "recurring_failure"
|
||||
ACTION_SEQUENCE = "action_sequence"
|
||||
CONTEXT_CORRELATION = "context_correlation"
|
||||
TEMPORAL = "temporal"
|
||||
EFFICIENCY = "efficiency"
|
||||
|
||||
|
||||
class FactorType(str, Enum):
|
||||
"""Types of factors contributing to outcomes."""
|
||||
|
||||
ACTION = "action"
|
||||
CONTEXT = "context"
|
||||
TIMING = "timing"
|
||||
RESOURCE = "resource"
|
||||
PRECEDING_STATE = "preceding_state"
|
||||
|
||||
|
||||
class AnomalyType(str, Enum):
|
||||
"""Types of anomalies detected."""
|
||||
|
||||
UNUSUAL_DURATION = "unusual_duration"
|
||||
UNEXPECTED_OUTCOME = "unexpected_outcome"
|
||||
UNUSUAL_TOKEN_USAGE = "unusual_token_usage"
|
||||
UNUSUAL_FAILURE_RATE = "unusual_failure_rate"
|
||||
UNUSUAL_ACTION_PATTERN = "unusual_action_pattern"
|
||||
|
||||
|
||||
class InsightType(str, Enum):
|
||||
"""Types of insights generated."""
|
||||
|
||||
OPTIMIZATION = "optimization"
|
||||
WARNING = "warning"
|
||||
LEARNING = "learning"
|
||||
RECOMMENDATION = "recommendation"
|
||||
TREND = "trend"
|
||||
|
||||
|
||||
@dataclass
|
||||
class TimeRange:
|
||||
"""Time range for reflection analysis."""
|
||||
|
||||
start: datetime
|
||||
end: datetime
|
||||
|
||||
@classmethod
|
||||
def last_hours(cls, hours: int = 24) -> "TimeRange":
|
||||
"""Create time range for last N hours."""
|
||||
end = _utcnow()
|
||||
start = datetime(
|
||||
end.year, end.month, end.day, end.hour, end.minute, end.second,
|
||||
tzinfo=UTC
|
||||
) - __import__("datetime").timedelta(hours=hours)
|
||||
return cls(start=start, end=end)
|
||||
|
||||
@classmethod
|
||||
def last_days(cls, days: int = 7) -> "TimeRange":
|
||||
"""Create time range for last N days."""
|
||||
from datetime import timedelta
|
||||
|
||||
end = _utcnow()
|
||||
start = end - timedelta(days=days)
|
||||
return cls(start=start, end=end)
|
||||
|
||||
@property
|
||||
def duration_hours(self) -> float:
|
||||
"""Get duration in hours."""
|
||||
return (self.end - self.start).total_seconds() / 3600
|
||||
|
||||
@property
|
||||
def duration_days(self) -> float:
|
||||
"""Get duration in days."""
|
||||
return (self.end - self.start).total_seconds() / 86400
|
||||
|
||||
|
||||
@dataclass
|
||||
class Pattern:
|
||||
"""A detected pattern in episodic memory."""
|
||||
|
||||
id: UUID
|
||||
pattern_type: PatternType
|
||||
name: str
|
||||
description: str
|
||||
confidence: float
|
||||
occurrence_count: int
|
||||
episode_ids: list[UUID]
|
||||
first_seen: datetime
|
||||
last_seen: datetime
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
@property
|
||||
def frequency(self) -> float:
|
||||
"""Calculate pattern frequency per day."""
|
||||
duration_days = (self.last_seen - self.first_seen).total_seconds() / 86400
|
||||
if duration_days < 1:
|
||||
duration_days = 1
|
||||
return self.occurrence_count / duration_days
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"id": str(self.id),
|
||||
"pattern_type": self.pattern_type.value,
|
||||
"name": self.name,
|
||||
"description": self.description,
|
||||
"confidence": self.confidence,
|
||||
"occurrence_count": self.occurrence_count,
|
||||
"episode_ids": [str(eid) for eid in self.episode_ids],
|
||||
"first_seen": self.first_seen.isoformat(),
|
||||
"last_seen": self.last_seen.isoformat(),
|
||||
"frequency": self.frequency,
|
||||
"metadata": self.metadata,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class Factor:
|
||||
"""A factor contributing to success or failure."""
|
||||
|
||||
id: UUID
|
||||
factor_type: FactorType
|
||||
name: str
|
||||
description: str
|
||||
impact_score: float
|
||||
correlation: float
|
||||
sample_size: int
|
||||
positive_examples: list[UUID]
|
||||
negative_examples: list[UUID]
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
@property
|
||||
def net_impact(self) -> float:
|
||||
"""Calculate net impact considering sample size."""
|
||||
# Weight impact by sample confidence
|
||||
confidence_weight = min(1.0, self.sample_size / 20)
|
||||
return self.impact_score * self.correlation * confidence_weight
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"id": str(self.id),
|
||||
"factor_type": self.factor_type.value,
|
||||
"name": self.name,
|
||||
"description": self.description,
|
||||
"impact_score": self.impact_score,
|
||||
"correlation": self.correlation,
|
||||
"sample_size": self.sample_size,
|
||||
"positive_examples": [str(eid) for eid in self.positive_examples],
|
||||
"negative_examples": [str(eid) for eid in self.negative_examples],
|
||||
"net_impact": self.net_impact,
|
||||
"metadata": self.metadata,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class Anomaly:
|
||||
"""An anomaly detected in memory patterns."""
|
||||
|
||||
id: UUID
|
||||
anomaly_type: AnomalyType
|
||||
description: str
|
||||
severity: float
|
||||
episode_ids: list[UUID]
|
||||
detected_at: datetime
|
||||
baseline_value: float
|
||||
observed_value: float
|
||||
deviation_factor: float
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
@property
|
||||
def is_critical(self) -> bool:
|
||||
"""Check if anomaly is critical (severity > 0.8)."""
|
||||
return self.severity > 0.8
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"id": str(self.id),
|
||||
"anomaly_type": self.anomaly_type.value,
|
||||
"description": self.description,
|
||||
"severity": self.severity,
|
||||
"episode_ids": [str(eid) for eid in self.episode_ids],
|
||||
"detected_at": self.detected_at.isoformat(),
|
||||
"baseline_value": self.baseline_value,
|
||||
"observed_value": self.observed_value,
|
||||
"deviation_factor": self.deviation_factor,
|
||||
"is_critical": self.is_critical,
|
||||
"metadata": self.metadata,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class Insight:
|
||||
"""An actionable insight generated from reflection."""
|
||||
|
||||
id: UUID
|
||||
insight_type: InsightType
|
||||
title: str
|
||||
description: str
|
||||
priority: float
|
||||
confidence: float
|
||||
source_patterns: list[UUID]
|
||||
source_factors: list[UUID]
|
||||
source_anomalies: list[UUID]
|
||||
recommended_actions: list[str]
|
||||
generated_at: datetime
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
||||
@property
|
||||
def actionable_score(self) -> float:
|
||||
"""Calculate how actionable this insight is."""
|
||||
action_weight = min(1.0, len(self.recommended_actions) / 3)
|
||||
return self.priority * self.confidence * action_weight
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"id": str(self.id),
|
||||
"insight_type": self.insight_type.value,
|
||||
"title": self.title,
|
||||
"description": self.description,
|
||||
"priority": self.priority,
|
||||
"confidence": self.confidence,
|
||||
"source_patterns": [str(pid) for pid in self.source_patterns],
|
||||
"source_factors": [str(fid) for fid in self.source_factors],
|
||||
"source_anomalies": [str(aid) for aid in self.source_anomalies],
|
||||
"recommended_actions": self.recommended_actions,
|
||||
"generated_at": self.generated_at.isoformat(),
|
||||
"actionable_score": self.actionable_score,
|
||||
"metadata": self.metadata,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ReflectionResult:
|
||||
"""Result of a reflection operation."""
|
||||
|
||||
patterns: list[Pattern]
|
||||
factors: list[Factor]
|
||||
anomalies: list[Anomaly]
|
||||
insights: list[Insight]
|
||||
time_range: TimeRange
|
||||
episodes_analyzed: int
|
||||
analysis_duration_seconds: float
|
||||
generated_at: datetime = field(default_factory=_utcnow)
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"patterns": [p.to_dict() for p in self.patterns],
|
||||
"factors": [f.to_dict() for f in self.factors],
|
||||
"anomalies": [a.to_dict() for a in self.anomalies],
|
||||
"insights": [i.to_dict() for i in self.insights],
|
||||
"time_range": {
|
||||
"start": self.time_range.start.isoformat(),
|
||||
"end": self.time_range.end.isoformat(),
|
||||
"duration_hours": self.time_range.duration_hours,
|
||||
},
|
||||
"episodes_analyzed": self.episodes_analyzed,
|
||||
"analysis_duration_seconds": self.analysis_duration_seconds,
|
||||
"generated_at": self.generated_at.isoformat(),
|
||||
}
|
||||
|
||||
@property
|
||||
def summary(self) -> str:
|
||||
"""Generate a summary of the reflection results."""
|
||||
lines = [
|
||||
f"Reflection Analysis ({self.time_range.duration_days:.1f} days)",
|
||||
f"Episodes analyzed: {self.episodes_analyzed}",
|
||||
"",
|
||||
f"Patterns detected: {len(self.patterns)}",
|
||||
f"Success/failure factors: {len(self.factors)}",
|
||||
f"Anomalies found: {len(self.anomalies)}",
|
||||
f"Insights generated: {len(self.insights)}",
|
||||
]
|
||||
|
||||
if self.insights:
|
||||
lines.append("")
|
||||
lines.append("Top insights:")
|
||||
for insight in sorted(self.insights, key=lambda i: -i.priority)[:3]:
|
||||
lines.append(f" - [{insight.insight_type.value}] {insight.title}")
|
||||
|
||||
return "\n".join(lines)
|
||||
Reference in New Issue
Block a user