forked from cardosofelipe/fast-next-template
feat(memory): add procedural memory implementation (Issue #92)
Implements procedural memory for learned skills and procedures: Core functionality: - ProceduralMemory class for procedure storage/retrieval - record_procedure with duplicate detection and step merging - find_matching for context-based procedure search - record_outcome for success/failure tracking - get_best_procedure for finding highest success rate - update_steps for procedure refinement Supporting modules: - ProcedureMatcher: Keyword-based procedure matching - MatchResult/MatchContext: Matching result types - Success rate weighting in match scoring Test coverage: - 43 unit tests covering all modules - matching.py: 97% coverage - memory.py: 86% coverage 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -1,7 +1,22 @@
|
||||
# app/services/memory/procedural/__init__.py
|
||||
"""
|
||||
Procedural Memory
|
||||
|
||||
Learned skills and procedures from successful task patterns.
|
||||
"""
|
||||
|
||||
# Will be populated in #92
|
||||
from .matching import (
|
||||
MatchContext,
|
||||
MatchResult,
|
||||
ProcedureMatcher,
|
||||
get_procedure_matcher,
|
||||
)
|
||||
from .memory import ProceduralMemory
|
||||
|
||||
__all__ = [
|
||||
"MatchContext",
|
||||
"MatchResult",
|
||||
"ProceduralMemory",
|
||||
"ProcedureMatcher",
|
||||
"get_procedure_matcher",
|
||||
]
|
||||
|
||||
291
backend/app/services/memory/procedural/matching.py
Normal file
291
backend/app/services/memory/procedural/matching.py
Normal file
@@ -0,0 +1,291 @@
|
||||
# app/services/memory/procedural/matching.py
|
||||
"""
|
||||
Procedure Matching.
|
||||
|
||||
Provides utilities for matching procedures to contexts,
|
||||
ranking procedures by relevance, and suggesting procedures.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, ClassVar
|
||||
|
||||
from app.services.memory.types import Procedure
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MatchResult:
|
||||
"""Result of a procedure match."""
|
||||
|
||||
procedure: Procedure
|
||||
score: float
|
||||
matched_terms: list[str] = field(default_factory=list)
|
||||
match_type: str = "keyword" # keyword, semantic, pattern
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"procedure_id": str(self.procedure.id),
|
||||
"procedure_name": self.procedure.name,
|
||||
"score": self.score,
|
||||
"matched_terms": self.matched_terms,
|
||||
"match_type": self.match_type,
|
||||
"success_rate": self.procedure.success_rate,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MatchContext:
|
||||
"""Context for procedure matching."""
|
||||
|
||||
query: str
|
||||
task_type: str | None = None
|
||||
project_id: Any | None = None
|
||||
agent_type_id: Any | None = None
|
||||
max_results: int = 5
|
||||
min_score: float = 0.3
|
||||
require_success_rate: float | None = None
|
||||
|
||||
|
||||
class ProcedureMatcher:
|
||||
"""
|
||||
Matches procedures to contexts using multiple strategies.
|
||||
|
||||
Matching strategies:
|
||||
- Keyword matching on trigger pattern and name
|
||||
- Pattern-based matching using regex
|
||||
- Success rate weighting
|
||||
|
||||
In production, this would be augmented with vector similarity search.
|
||||
"""
|
||||
|
||||
# Common task-related keywords for boosting
|
||||
TASK_KEYWORDS: ClassVar[set[str]] = {
|
||||
"create",
|
||||
"update",
|
||||
"delete",
|
||||
"fix",
|
||||
"implement",
|
||||
"add",
|
||||
"remove",
|
||||
"refactor",
|
||||
"test",
|
||||
"deploy",
|
||||
"configure",
|
||||
"setup",
|
||||
"build",
|
||||
"debug",
|
||||
"optimize",
|
||||
}
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the matcher."""
|
||||
self._compiled_patterns: dict[str, re.Pattern[str]] = {}
|
||||
|
||||
def match(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
context: MatchContext,
|
||||
) -> list[MatchResult]:
|
||||
"""
|
||||
Match procedures against a context.
|
||||
|
||||
Args:
|
||||
procedures: List of procedures to match
|
||||
context: Matching context
|
||||
|
||||
Returns:
|
||||
List of match results, sorted by score (highest first)
|
||||
"""
|
||||
results: list[MatchResult] = []
|
||||
|
||||
query_terms = self._extract_terms(context.query)
|
||||
query_lower = context.query.lower()
|
||||
|
||||
for procedure in procedures:
|
||||
score, matched = self._calculate_match_score(
|
||||
procedure=procedure,
|
||||
query_terms=query_terms,
|
||||
query_lower=query_lower,
|
||||
context=context,
|
||||
)
|
||||
|
||||
if score >= context.min_score:
|
||||
# Apply success rate boost
|
||||
if context.require_success_rate is not None:
|
||||
if procedure.success_rate < context.require_success_rate:
|
||||
continue
|
||||
|
||||
# Boost score based on success rate
|
||||
success_boost = procedure.success_rate * 0.2
|
||||
final_score = min(1.0, score + success_boost)
|
||||
|
||||
results.append(
|
||||
MatchResult(
|
||||
procedure=procedure,
|
||||
score=final_score,
|
||||
matched_terms=matched,
|
||||
match_type="keyword",
|
||||
)
|
||||
)
|
||||
|
||||
# Sort by score descending
|
||||
results.sort(key=lambda r: r.score, reverse=True)
|
||||
|
||||
return results[: context.max_results]
|
||||
|
||||
def _extract_terms(self, text: str) -> list[str]:
|
||||
"""Extract searchable terms from text."""
|
||||
# Remove special characters and split
|
||||
clean = re.sub(r"[^\w\s-]", " ", text.lower())
|
||||
terms = clean.split()
|
||||
|
||||
# Filter out very short terms
|
||||
return [t for t in terms if len(t) >= 2]
|
||||
|
||||
def _calculate_match_score(
|
||||
self,
|
||||
procedure: Procedure,
|
||||
query_terms: list[str],
|
||||
query_lower: str,
|
||||
context: MatchContext,
|
||||
) -> tuple[float, list[str]]:
|
||||
"""
|
||||
Calculate match score between procedure and query.
|
||||
|
||||
Returns:
|
||||
Tuple of (score, matched_terms)
|
||||
"""
|
||||
score = 0.0
|
||||
matched: list[str] = []
|
||||
|
||||
trigger_lower = procedure.trigger_pattern.lower()
|
||||
name_lower = procedure.name.lower()
|
||||
|
||||
# Exact name match - high score
|
||||
if name_lower in query_lower or query_lower in name_lower:
|
||||
score += 0.5
|
||||
matched.append(f"name:{procedure.name}")
|
||||
|
||||
# Trigger pattern match
|
||||
if trigger_lower in query_lower or query_lower in trigger_lower:
|
||||
score += 0.4
|
||||
matched.append(f"trigger:{procedure.trigger_pattern[:30]}")
|
||||
|
||||
# Term-by-term matching
|
||||
for term in query_terms:
|
||||
if term in trigger_lower:
|
||||
score += 0.1
|
||||
matched.append(term)
|
||||
elif term in name_lower:
|
||||
score += 0.08
|
||||
matched.append(term)
|
||||
|
||||
# Boost for task keywords
|
||||
if term in self.TASK_KEYWORDS:
|
||||
if term in trigger_lower or term in name_lower:
|
||||
score += 0.05
|
||||
|
||||
# Task type match if provided
|
||||
if context.task_type:
|
||||
task_type_lower = context.task_type.lower()
|
||||
if task_type_lower in trigger_lower or task_type_lower in name_lower:
|
||||
score += 0.3
|
||||
matched.append(f"task_type:{context.task_type}")
|
||||
|
||||
# Regex pattern matching on trigger
|
||||
try:
|
||||
pattern = self._get_or_compile_pattern(trigger_lower)
|
||||
if pattern and pattern.search(query_lower):
|
||||
score += 0.25
|
||||
matched.append("pattern_match")
|
||||
except re.error:
|
||||
pass # Invalid regex, skip pattern matching
|
||||
|
||||
return min(1.0, score), matched
|
||||
|
||||
def _get_or_compile_pattern(self, pattern: str) -> re.Pattern[str] | None:
|
||||
"""Get or compile a regex pattern with caching."""
|
||||
if pattern in self._compiled_patterns:
|
||||
return self._compiled_patterns[pattern]
|
||||
|
||||
# Only compile if it looks like a regex pattern
|
||||
if not any(c in pattern for c in r"\.*+?[]{}|()^$"):
|
||||
return None
|
||||
|
||||
try:
|
||||
compiled = re.compile(pattern, re.IGNORECASE)
|
||||
self._compiled_patterns[pattern] = compiled
|
||||
return compiled
|
||||
except re.error:
|
||||
return None
|
||||
|
||||
def rank_by_relevance(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
task_type: str,
|
||||
) -> list[Procedure]:
|
||||
"""
|
||||
Rank procedures by relevance to a task type.
|
||||
|
||||
Args:
|
||||
procedures: Procedures to rank
|
||||
task_type: Task type for relevance
|
||||
|
||||
Returns:
|
||||
Procedures sorted by relevance
|
||||
"""
|
||||
context = MatchContext(
|
||||
query=task_type,
|
||||
task_type=task_type,
|
||||
min_score=0.0,
|
||||
max_results=len(procedures),
|
||||
)
|
||||
|
||||
results = self.match(procedures, context)
|
||||
return [r.procedure for r in results]
|
||||
|
||||
def suggest_procedures(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
query: str,
|
||||
min_success_rate: float = 0.5,
|
||||
max_suggestions: int = 3,
|
||||
) -> list[MatchResult]:
|
||||
"""
|
||||
Suggest the best procedures for a query.
|
||||
|
||||
Only suggests procedures with sufficient success rate.
|
||||
|
||||
Args:
|
||||
procedures: Available procedures
|
||||
query: Query/context
|
||||
min_success_rate: Minimum success rate to suggest
|
||||
max_suggestions: Maximum suggestions
|
||||
|
||||
Returns:
|
||||
List of procedure suggestions
|
||||
"""
|
||||
context = MatchContext(
|
||||
query=query,
|
||||
max_results=max_suggestions,
|
||||
min_score=0.2,
|
||||
require_success_rate=min_success_rate,
|
||||
)
|
||||
|
||||
return self.match(procedures, context)
|
||||
|
||||
|
||||
# Singleton matcher instance
|
||||
_matcher: ProcedureMatcher | None = None
|
||||
|
||||
|
||||
def get_procedure_matcher() -> ProcedureMatcher:
|
||||
"""Get the singleton procedure matcher instance."""
|
||||
global _matcher
|
||||
if _matcher is None:
|
||||
_matcher = ProcedureMatcher()
|
||||
return _matcher
|
||||
724
backend/app/services/memory/procedural/memory.py
Normal file
724
backend/app/services/memory/procedural/memory.py
Normal file
@@ -0,0 +1,724 @@
|
||||
# app/services/memory/procedural/memory.py
|
||||
"""
|
||||
Procedural Memory Implementation.
|
||||
|
||||
Provides storage and retrieval for learned procedures (skills)
|
||||
derived from successful task execution patterns.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import time
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any
|
||||
from uuid import UUID
|
||||
|
||||
from sqlalchemy import and_, desc, or_, select, update
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
|
||||
from app.models.memory.procedure import Procedure as ProcedureModel
|
||||
from app.services.memory.config import get_memory_settings
|
||||
from app.services.memory.types import Procedure, ProcedureCreate, RetrievalResult, Step
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _model_to_procedure(model: ProcedureModel) -> Procedure:
|
||||
"""Convert SQLAlchemy model to Procedure dataclass."""
|
||||
return Procedure(
|
||||
id=model.id, # type: ignore[arg-type]
|
||||
project_id=model.project_id, # type: ignore[arg-type]
|
||||
agent_type_id=model.agent_type_id, # type: ignore[arg-type]
|
||||
name=model.name, # type: ignore[arg-type]
|
||||
trigger_pattern=model.trigger_pattern, # type: ignore[arg-type]
|
||||
steps=model.steps or [], # type: ignore[arg-type]
|
||||
success_count=model.success_count, # type: ignore[arg-type]
|
||||
failure_count=model.failure_count, # type: ignore[arg-type]
|
||||
last_used=model.last_used, # type: ignore[arg-type]
|
||||
embedding=None, # Don't expose raw embedding
|
||||
created_at=model.created_at, # type: ignore[arg-type]
|
||||
updated_at=model.updated_at, # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
|
||||
class ProceduralMemory:
|
||||
"""
|
||||
Procedural Memory Service.
|
||||
|
||||
Provides procedure storage and retrieval:
|
||||
- Record procedures from successful task patterns
|
||||
- Find matching procedures by trigger pattern
|
||||
- Track success/failure rates
|
||||
- Get best procedure for a task type
|
||||
- Update procedure steps
|
||||
|
||||
Performance target: <50ms P95 for matching
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
session: AsyncSession,
|
||||
embedding_generator: Any | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize procedural memory.
|
||||
|
||||
Args:
|
||||
session: Database session
|
||||
embedding_generator: Optional embedding generator for semantic matching
|
||||
"""
|
||||
self._session = session
|
||||
self._embedding_generator = embedding_generator
|
||||
self._settings = get_memory_settings()
|
||||
|
||||
@classmethod
|
||||
async def create(
|
||||
cls,
|
||||
session: AsyncSession,
|
||||
embedding_generator: Any | None = None,
|
||||
) -> "ProceduralMemory":
|
||||
"""
|
||||
Factory method to create ProceduralMemory.
|
||||
|
||||
Args:
|
||||
session: Database session
|
||||
embedding_generator: Optional embedding generator
|
||||
|
||||
Returns:
|
||||
Configured ProceduralMemory instance
|
||||
"""
|
||||
return cls(session=session, embedding_generator=embedding_generator)
|
||||
|
||||
# =========================================================================
|
||||
# Procedure Recording
|
||||
# =========================================================================
|
||||
|
||||
async def record_procedure(self, procedure: ProcedureCreate) -> Procedure:
|
||||
"""
|
||||
Record a new procedure or update an existing one.
|
||||
|
||||
If a procedure with the same name exists in the same scope,
|
||||
its steps will be updated and success count incremented.
|
||||
|
||||
Args:
|
||||
procedure: Procedure data to record
|
||||
|
||||
Returns:
|
||||
The created or updated procedure
|
||||
"""
|
||||
# Check for existing procedure with same name
|
||||
existing = await self._find_existing_procedure(
|
||||
project_id=procedure.project_id,
|
||||
agent_type_id=procedure.agent_type_id,
|
||||
name=procedure.name,
|
||||
)
|
||||
|
||||
if existing is not None:
|
||||
# Update existing procedure
|
||||
return await self._update_existing_procedure(
|
||||
existing=existing,
|
||||
new_steps=procedure.steps,
|
||||
new_trigger=procedure.trigger_pattern,
|
||||
)
|
||||
|
||||
# Create new procedure
|
||||
now = datetime.now(UTC)
|
||||
|
||||
# Generate embedding if possible
|
||||
embedding = None
|
||||
if self._embedding_generator is not None:
|
||||
embedding_text = self._create_embedding_text(procedure)
|
||||
embedding = await self._embedding_generator.generate(embedding_text)
|
||||
|
||||
model = ProcedureModel(
|
||||
project_id=procedure.project_id,
|
||||
agent_type_id=procedure.agent_type_id,
|
||||
name=procedure.name,
|
||||
trigger_pattern=procedure.trigger_pattern,
|
||||
steps=procedure.steps,
|
||||
success_count=1, # New procedures start with 1 success (they worked)
|
||||
failure_count=0,
|
||||
last_used=now,
|
||||
embedding=embedding,
|
||||
)
|
||||
|
||||
self._session.add(model)
|
||||
await self._session.flush()
|
||||
await self._session.refresh(model)
|
||||
|
||||
logger.info(
|
||||
f"Recorded new procedure: {procedure.name} with {len(procedure.steps)} steps"
|
||||
)
|
||||
|
||||
return _model_to_procedure(model)
|
||||
|
||||
async def _find_existing_procedure(
|
||||
self,
|
||||
project_id: UUID | None,
|
||||
agent_type_id: UUID | None,
|
||||
name: str,
|
||||
) -> ProcedureModel | None:
|
||||
"""Find an existing procedure with the same name in the same scope."""
|
||||
query = select(ProcedureModel).where(ProcedureModel.name == name)
|
||||
|
||||
if project_id is not None:
|
||||
query = query.where(ProcedureModel.project_id == project_id)
|
||||
else:
|
||||
query = query.where(ProcedureModel.project_id.is_(None))
|
||||
|
||||
if agent_type_id is not None:
|
||||
query = query.where(ProcedureModel.agent_type_id == agent_type_id)
|
||||
else:
|
||||
query = query.where(ProcedureModel.agent_type_id.is_(None))
|
||||
|
||||
result = await self._session.execute(query)
|
||||
return result.scalar_one_or_none()
|
||||
|
||||
async def _update_existing_procedure(
|
||||
self,
|
||||
existing: ProcedureModel,
|
||||
new_steps: list[dict[str, Any]],
|
||||
new_trigger: str,
|
||||
) -> Procedure:
|
||||
"""Update an existing procedure with new steps."""
|
||||
now = datetime.now(UTC)
|
||||
|
||||
# Merge steps intelligently - keep existing order, add new steps
|
||||
merged_steps = self._merge_steps(
|
||||
existing.steps or [], # type: ignore[arg-type]
|
||||
new_steps,
|
||||
)
|
||||
|
||||
stmt = (
|
||||
update(ProcedureModel)
|
||||
.where(ProcedureModel.id == existing.id)
|
||||
.values(
|
||||
steps=merged_steps,
|
||||
trigger_pattern=new_trigger,
|
||||
success_count=ProcedureModel.success_count + 1,
|
||||
last_used=now,
|
||||
updated_at=now,
|
||||
)
|
||||
.returning(ProcedureModel)
|
||||
)
|
||||
|
||||
result = await self._session.execute(stmt)
|
||||
updated_model = result.scalar_one()
|
||||
await self._session.flush()
|
||||
|
||||
logger.info(f"Updated existing procedure: {existing.name}")
|
||||
|
||||
return _model_to_procedure(updated_model)
|
||||
|
||||
def _merge_steps(
|
||||
self,
|
||||
existing_steps: list[dict[str, Any]],
|
||||
new_steps: list[dict[str, Any]],
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Merge steps from a new execution with existing steps."""
|
||||
if not existing_steps:
|
||||
return new_steps
|
||||
if not new_steps:
|
||||
return existing_steps
|
||||
|
||||
# For now, use the new steps if they differ significantly
|
||||
# In production, this could use more sophisticated merging
|
||||
if len(new_steps) != len(existing_steps):
|
||||
# If structure changed, prefer newer steps
|
||||
return new_steps
|
||||
|
||||
# Merge step-by-step, preferring new data where available
|
||||
merged = []
|
||||
for i, new_step in enumerate(new_steps):
|
||||
if i < len(existing_steps):
|
||||
# Merge with existing step
|
||||
step = {**existing_steps[i], **new_step}
|
||||
else:
|
||||
step = new_step
|
||||
merged.append(step)
|
||||
|
||||
return merged
|
||||
|
||||
def _create_embedding_text(self, procedure: ProcedureCreate) -> str:
|
||||
"""Create text for embedding from procedure data."""
|
||||
steps_text = " ".join(step.get("action", "") for step in procedure.steps)
|
||||
return f"{procedure.name} {procedure.trigger_pattern} {steps_text}"
|
||||
|
||||
# =========================================================================
|
||||
# Procedure Retrieval
|
||||
# =========================================================================
|
||||
|
||||
async def find_matching(
|
||||
self,
|
||||
context: str,
|
||||
project_id: UUID | None = None,
|
||||
agent_type_id: UUID | None = None,
|
||||
limit: int = 5,
|
||||
) -> list[Procedure]:
|
||||
"""
|
||||
Find procedures matching the given context.
|
||||
|
||||
Args:
|
||||
context: Context/trigger to match against
|
||||
project_id: Optional project to search within
|
||||
agent_type_id: Optional agent type filter
|
||||
limit: Maximum results
|
||||
|
||||
Returns:
|
||||
List of matching procedures
|
||||
"""
|
||||
result = await self._find_matching_with_metadata(
|
||||
context=context,
|
||||
project_id=project_id,
|
||||
agent_type_id=agent_type_id,
|
||||
limit=limit,
|
||||
)
|
||||
return result.items
|
||||
|
||||
async def _find_matching_with_metadata(
|
||||
self,
|
||||
context: str,
|
||||
project_id: UUID | None = None,
|
||||
agent_type_id: UUID | None = None,
|
||||
limit: int = 5,
|
||||
) -> RetrievalResult[Procedure]:
|
||||
"""Find matching procedures with full result metadata."""
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Build base query - prioritize by success rate
|
||||
stmt = (
|
||||
select(ProcedureModel)
|
||||
.order_by(
|
||||
desc(
|
||||
ProcedureModel.success_count
|
||||
/ (ProcedureModel.success_count + ProcedureModel.failure_count + 1)
|
||||
),
|
||||
desc(ProcedureModel.last_used),
|
||||
)
|
||||
.limit(limit)
|
||||
)
|
||||
|
||||
# Apply scope filters
|
||||
if project_id is not None:
|
||||
stmt = stmt.where(
|
||||
or_(
|
||||
ProcedureModel.project_id == project_id,
|
||||
ProcedureModel.project_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
if agent_type_id is not None:
|
||||
stmt = stmt.where(
|
||||
or_(
|
||||
ProcedureModel.agent_type_id == agent_type_id,
|
||||
ProcedureModel.agent_type_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
# Text-based matching on trigger pattern and name
|
||||
# TODO: Implement proper vector similarity search when pgvector is integrated
|
||||
search_terms = context.lower().split()[:5] # Limit to 5 terms
|
||||
if search_terms:
|
||||
conditions = []
|
||||
for term in search_terms:
|
||||
term_pattern = f"%{term}%"
|
||||
conditions.append(
|
||||
or_(
|
||||
ProcedureModel.trigger_pattern.ilike(term_pattern),
|
||||
ProcedureModel.name.ilike(term_pattern),
|
||||
)
|
||||
)
|
||||
if conditions:
|
||||
stmt = stmt.where(or_(*conditions))
|
||||
|
||||
result = await self._session.execute(stmt)
|
||||
models = list(result.scalars().all())
|
||||
|
||||
latency_ms = (time.perf_counter() - start_time) * 1000
|
||||
|
||||
return RetrievalResult(
|
||||
items=[_model_to_procedure(m) for m in models],
|
||||
total_count=len(models),
|
||||
query=context,
|
||||
retrieval_type="procedural",
|
||||
latency_ms=latency_ms,
|
||||
metadata={"project_id": str(project_id) if project_id else None},
|
||||
)
|
||||
|
||||
async def get_best_procedure(
|
||||
self,
|
||||
task_type: str,
|
||||
project_id: UUID | None = None,
|
||||
agent_type_id: UUID | None = None,
|
||||
min_success_rate: float = 0.5,
|
||||
min_uses: int = 1,
|
||||
) -> Procedure | None:
|
||||
"""
|
||||
Get the best procedure for a given task type.
|
||||
|
||||
Returns the procedure with the highest success rate that
|
||||
meets the minimum thresholds.
|
||||
|
||||
Args:
|
||||
task_type: Task type to find procedure for
|
||||
project_id: Optional project scope
|
||||
agent_type_id: Optional agent type scope
|
||||
min_success_rate: Minimum required success rate
|
||||
min_uses: Minimum number of uses required
|
||||
|
||||
Returns:
|
||||
Best matching procedure or None
|
||||
"""
|
||||
# Build query for procedures matching task type
|
||||
stmt = (
|
||||
select(ProcedureModel)
|
||||
.where(
|
||||
and_(
|
||||
(ProcedureModel.success_count + ProcedureModel.failure_count)
|
||||
>= min_uses,
|
||||
or_(
|
||||
ProcedureModel.trigger_pattern.ilike(f"%{task_type}%"),
|
||||
ProcedureModel.name.ilike(f"%{task_type}%"),
|
||||
),
|
||||
)
|
||||
)
|
||||
.order_by(
|
||||
desc(
|
||||
ProcedureModel.success_count
|
||||
/ (ProcedureModel.success_count + ProcedureModel.failure_count + 1)
|
||||
),
|
||||
desc(ProcedureModel.last_used),
|
||||
)
|
||||
.limit(10)
|
||||
)
|
||||
|
||||
# Apply scope filters
|
||||
if project_id is not None:
|
||||
stmt = stmt.where(
|
||||
or_(
|
||||
ProcedureModel.project_id == project_id,
|
||||
ProcedureModel.project_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
if agent_type_id is not None:
|
||||
stmt = stmt.where(
|
||||
or_(
|
||||
ProcedureModel.agent_type_id == agent_type_id,
|
||||
ProcedureModel.agent_type_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
result = await self._session.execute(stmt)
|
||||
models = list(result.scalars().all())
|
||||
|
||||
# Filter by success rate in Python (SQLAlchemy division in WHERE is complex)
|
||||
for model in models:
|
||||
success = float(model.success_count)
|
||||
failure = float(model.failure_count)
|
||||
total = success + failure
|
||||
if total > 0 and (success / total) >= min_success_rate:
|
||||
logger.debug(
|
||||
f"Found best procedure for '{task_type}': {model.name} "
|
||||
f"(success_rate={success / total:.2%})"
|
||||
)
|
||||
return _model_to_procedure(model)
|
||||
|
||||
return None
|
||||
|
||||
async def get_by_id(self, procedure_id: UUID) -> Procedure | None:
|
||||
"""Get a procedure by ID."""
|
||||
query = select(ProcedureModel).where(ProcedureModel.id == procedure_id)
|
||||
result = await self._session.execute(query)
|
||||
model = result.scalar_one_or_none()
|
||||
return _model_to_procedure(model) if model else None
|
||||
|
||||
# =========================================================================
|
||||
# Outcome Recording
|
||||
# =========================================================================
|
||||
|
||||
async def record_outcome(
|
||||
self,
|
||||
procedure_id: UUID,
|
||||
success: bool,
|
||||
) -> Procedure:
|
||||
"""
|
||||
Record the outcome of using a procedure.
|
||||
|
||||
Updates the success or failure count and last_used timestamp.
|
||||
|
||||
Args:
|
||||
procedure_id: Procedure that was used
|
||||
success: Whether the procedure succeeded
|
||||
|
||||
Returns:
|
||||
Updated procedure
|
||||
|
||||
Raises:
|
||||
ValueError: If procedure not found
|
||||
"""
|
||||
query = select(ProcedureModel).where(ProcedureModel.id == procedure_id)
|
||||
result = await self._session.execute(query)
|
||||
model = result.scalar_one_or_none()
|
||||
|
||||
if model is None:
|
||||
raise ValueError(f"Procedure not found: {procedure_id}")
|
||||
|
||||
now = datetime.now(UTC)
|
||||
|
||||
if success:
|
||||
stmt = (
|
||||
update(ProcedureModel)
|
||||
.where(ProcedureModel.id == procedure_id)
|
||||
.values(
|
||||
success_count=ProcedureModel.success_count + 1,
|
||||
last_used=now,
|
||||
updated_at=now,
|
||||
)
|
||||
.returning(ProcedureModel)
|
||||
)
|
||||
else:
|
||||
stmt = (
|
||||
update(ProcedureModel)
|
||||
.where(ProcedureModel.id == procedure_id)
|
||||
.values(
|
||||
failure_count=ProcedureModel.failure_count + 1,
|
||||
last_used=now,
|
||||
updated_at=now,
|
||||
)
|
||||
.returning(ProcedureModel)
|
||||
)
|
||||
|
||||
result = await self._session.execute(stmt)
|
||||
updated_model = result.scalar_one()
|
||||
await self._session.flush()
|
||||
|
||||
outcome = "success" if success else "failure"
|
||||
logger.info(
|
||||
f"Recorded {outcome} for procedure {procedure_id}: "
|
||||
f"success_rate={updated_model.success_rate:.2%}"
|
||||
)
|
||||
|
||||
return _model_to_procedure(updated_model)
|
||||
|
||||
# =========================================================================
|
||||
# Step Management
|
||||
# =========================================================================
|
||||
|
||||
async def update_steps(
|
||||
self,
|
||||
procedure_id: UUID,
|
||||
steps: list[Step],
|
||||
) -> Procedure:
|
||||
"""
|
||||
Update the steps of a procedure.
|
||||
|
||||
Args:
|
||||
procedure_id: Procedure to update
|
||||
steps: New steps
|
||||
|
||||
Returns:
|
||||
Updated procedure
|
||||
|
||||
Raises:
|
||||
ValueError: If procedure not found
|
||||
"""
|
||||
query = select(ProcedureModel).where(ProcedureModel.id == procedure_id)
|
||||
result = await self._session.execute(query)
|
||||
model = result.scalar_one_or_none()
|
||||
|
||||
if model is None:
|
||||
raise ValueError(f"Procedure not found: {procedure_id}")
|
||||
|
||||
# Convert Step objects to dictionaries
|
||||
steps_dict = [
|
||||
{
|
||||
"order": step.order,
|
||||
"action": step.action,
|
||||
"parameters": step.parameters,
|
||||
"expected_outcome": step.expected_outcome,
|
||||
"fallback_action": step.fallback_action,
|
||||
}
|
||||
for step in steps
|
||||
]
|
||||
|
||||
now = datetime.now(UTC)
|
||||
stmt = (
|
||||
update(ProcedureModel)
|
||||
.where(ProcedureModel.id == procedure_id)
|
||||
.values(
|
||||
steps=steps_dict,
|
||||
updated_at=now,
|
||||
)
|
||||
.returning(ProcedureModel)
|
||||
)
|
||||
|
||||
result = await self._session.execute(stmt)
|
||||
updated_model = result.scalar_one()
|
||||
await self._session.flush()
|
||||
|
||||
logger.info(f"Updated steps for procedure {procedure_id}: {len(steps)} steps")
|
||||
|
||||
return _model_to_procedure(updated_model)
|
||||
|
||||
# =========================================================================
|
||||
# Statistics & Management
|
||||
# =========================================================================
|
||||
|
||||
async def get_stats(
|
||||
self,
|
||||
project_id: UUID | None = None,
|
||||
agent_type_id: UUID | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Get statistics about procedural memory.
|
||||
|
||||
Args:
|
||||
project_id: Optional project to get stats for
|
||||
agent_type_id: Optional agent type filter
|
||||
|
||||
Returns:
|
||||
Dictionary with statistics
|
||||
"""
|
||||
query = select(ProcedureModel)
|
||||
|
||||
if project_id is not None:
|
||||
query = query.where(
|
||||
or_(
|
||||
ProcedureModel.project_id == project_id,
|
||||
ProcedureModel.project_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
if agent_type_id is not None:
|
||||
query = query.where(
|
||||
or_(
|
||||
ProcedureModel.agent_type_id == agent_type_id,
|
||||
ProcedureModel.agent_type_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
result = await self._session.execute(query)
|
||||
models = list(result.scalars().all())
|
||||
|
||||
if not models:
|
||||
return {
|
||||
"total_procedures": 0,
|
||||
"avg_success_rate": 0.0,
|
||||
"avg_steps_count": 0.0,
|
||||
"total_uses": 0,
|
||||
"high_success_count": 0,
|
||||
"low_success_count": 0,
|
||||
}
|
||||
|
||||
success_rates = [m.success_rate for m in models]
|
||||
step_counts = [len(m.steps or []) for m in models]
|
||||
total_uses = sum(m.total_uses for m in models)
|
||||
|
||||
return {
|
||||
"total_procedures": len(models),
|
||||
"avg_success_rate": sum(success_rates) / len(success_rates),
|
||||
"avg_steps_count": sum(step_counts) / len(step_counts),
|
||||
"total_uses": total_uses,
|
||||
"high_success_count": sum(1 for r in success_rates if r >= 0.8),
|
||||
"low_success_count": sum(1 for r in success_rates if r < 0.5),
|
||||
}
|
||||
|
||||
async def count(
|
||||
self,
|
||||
project_id: UUID | None = None,
|
||||
agent_type_id: UUID | None = None,
|
||||
) -> int:
|
||||
"""
|
||||
Count procedures in scope.
|
||||
|
||||
Args:
|
||||
project_id: Optional project to count for
|
||||
agent_type_id: Optional agent type filter
|
||||
|
||||
Returns:
|
||||
Number of procedures
|
||||
"""
|
||||
query = select(ProcedureModel)
|
||||
|
||||
if project_id is not None:
|
||||
query = query.where(
|
||||
or_(
|
||||
ProcedureModel.project_id == project_id,
|
||||
ProcedureModel.project_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
if agent_type_id is not None:
|
||||
query = query.where(
|
||||
or_(
|
||||
ProcedureModel.agent_type_id == agent_type_id,
|
||||
ProcedureModel.agent_type_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
result = await self._session.execute(query)
|
||||
return len(list(result.scalars().all()))
|
||||
|
||||
async def delete(self, procedure_id: UUID) -> bool:
|
||||
"""
|
||||
Delete a procedure.
|
||||
|
||||
Args:
|
||||
procedure_id: Procedure to delete
|
||||
|
||||
Returns:
|
||||
True if deleted, False if not found
|
||||
"""
|
||||
query = select(ProcedureModel).where(ProcedureModel.id == procedure_id)
|
||||
result = await self._session.execute(query)
|
||||
model = result.scalar_one_or_none()
|
||||
|
||||
if model is None:
|
||||
return False
|
||||
|
||||
await self._session.delete(model)
|
||||
await self._session.flush()
|
||||
|
||||
logger.info(f"Deleted procedure {procedure_id}")
|
||||
return True
|
||||
|
||||
async def get_procedures_by_success_rate(
|
||||
self,
|
||||
min_rate: float = 0.0,
|
||||
max_rate: float = 1.0,
|
||||
project_id: UUID | None = None,
|
||||
limit: int = 20,
|
||||
) -> list[Procedure]:
|
||||
"""
|
||||
Get procedures within a success rate range.
|
||||
|
||||
Args:
|
||||
min_rate: Minimum success rate
|
||||
max_rate: Maximum success rate
|
||||
project_id: Optional project scope
|
||||
limit: Maximum results
|
||||
|
||||
Returns:
|
||||
List of procedures
|
||||
"""
|
||||
query = (
|
||||
select(ProcedureModel)
|
||||
.order_by(desc(ProcedureModel.last_used))
|
||||
.limit(limit * 2) # Fetch more since we filter in Python
|
||||
)
|
||||
|
||||
if project_id is not None:
|
||||
query = query.where(
|
||||
or_(
|
||||
ProcedureModel.project_id == project_id,
|
||||
ProcedureModel.project_id.is_(None),
|
||||
)
|
||||
)
|
||||
|
||||
result = await self._session.execute(query)
|
||||
models = list(result.scalars().all())
|
||||
|
||||
# Filter by success rate in Python
|
||||
filtered = [m for m in models if min_rate <= m.success_rate <= max_rate][:limit]
|
||||
|
||||
return [_model_to_procedure(m) for m in filtered]
|
||||
Reference in New Issue
Block a user