forked from cardosofelipe/fast-next-template
feat(memory): add procedural memory implementation (Issue #92)
Implements procedural memory for learned skills and procedures: Core functionality: - ProceduralMemory class for procedure storage/retrieval - record_procedure with duplicate detection and step merging - find_matching for context-based procedure search - record_outcome for success/failure tracking - get_best_procedure for finding highest success rate - update_steps for procedure refinement Supporting modules: - ProcedureMatcher: Keyword-based procedure matching - MatchResult/MatchContext: Matching result types - Success rate weighting in match scoring Test coverage: - 43 unit tests covering all modules - matching.py: 97% coverage - memory.py: 86% coverage 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
291
backend/app/services/memory/procedural/matching.py
Normal file
291
backend/app/services/memory/procedural/matching.py
Normal file
@@ -0,0 +1,291 @@
|
||||
# app/services/memory/procedural/matching.py
|
||||
"""
|
||||
Procedure Matching.
|
||||
|
||||
Provides utilities for matching procedures to contexts,
|
||||
ranking procedures by relevance, and suggesting procedures.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, ClassVar
|
||||
|
||||
from app.services.memory.types import Procedure
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MatchResult:
|
||||
"""Result of a procedure match."""
|
||||
|
||||
procedure: Procedure
|
||||
score: float
|
||||
matched_terms: list[str] = field(default_factory=list)
|
||||
match_type: str = "keyword" # keyword, semantic, pattern
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary."""
|
||||
return {
|
||||
"procedure_id": str(self.procedure.id),
|
||||
"procedure_name": self.procedure.name,
|
||||
"score": self.score,
|
||||
"matched_terms": self.matched_terms,
|
||||
"match_type": self.match_type,
|
||||
"success_rate": self.procedure.success_rate,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MatchContext:
|
||||
"""Context for procedure matching."""
|
||||
|
||||
query: str
|
||||
task_type: str | None = None
|
||||
project_id: Any | None = None
|
||||
agent_type_id: Any | None = None
|
||||
max_results: int = 5
|
||||
min_score: float = 0.3
|
||||
require_success_rate: float | None = None
|
||||
|
||||
|
||||
class ProcedureMatcher:
|
||||
"""
|
||||
Matches procedures to contexts using multiple strategies.
|
||||
|
||||
Matching strategies:
|
||||
- Keyword matching on trigger pattern and name
|
||||
- Pattern-based matching using regex
|
||||
- Success rate weighting
|
||||
|
||||
In production, this would be augmented with vector similarity search.
|
||||
"""
|
||||
|
||||
# Common task-related keywords for boosting
|
||||
TASK_KEYWORDS: ClassVar[set[str]] = {
|
||||
"create",
|
||||
"update",
|
||||
"delete",
|
||||
"fix",
|
||||
"implement",
|
||||
"add",
|
||||
"remove",
|
||||
"refactor",
|
||||
"test",
|
||||
"deploy",
|
||||
"configure",
|
||||
"setup",
|
||||
"build",
|
||||
"debug",
|
||||
"optimize",
|
||||
}
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the matcher."""
|
||||
self._compiled_patterns: dict[str, re.Pattern[str]] = {}
|
||||
|
||||
def match(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
context: MatchContext,
|
||||
) -> list[MatchResult]:
|
||||
"""
|
||||
Match procedures against a context.
|
||||
|
||||
Args:
|
||||
procedures: List of procedures to match
|
||||
context: Matching context
|
||||
|
||||
Returns:
|
||||
List of match results, sorted by score (highest first)
|
||||
"""
|
||||
results: list[MatchResult] = []
|
||||
|
||||
query_terms = self._extract_terms(context.query)
|
||||
query_lower = context.query.lower()
|
||||
|
||||
for procedure in procedures:
|
||||
score, matched = self._calculate_match_score(
|
||||
procedure=procedure,
|
||||
query_terms=query_terms,
|
||||
query_lower=query_lower,
|
||||
context=context,
|
||||
)
|
||||
|
||||
if score >= context.min_score:
|
||||
# Apply success rate boost
|
||||
if context.require_success_rate is not None:
|
||||
if procedure.success_rate < context.require_success_rate:
|
||||
continue
|
||||
|
||||
# Boost score based on success rate
|
||||
success_boost = procedure.success_rate * 0.2
|
||||
final_score = min(1.0, score + success_boost)
|
||||
|
||||
results.append(
|
||||
MatchResult(
|
||||
procedure=procedure,
|
||||
score=final_score,
|
||||
matched_terms=matched,
|
||||
match_type="keyword",
|
||||
)
|
||||
)
|
||||
|
||||
# Sort by score descending
|
||||
results.sort(key=lambda r: r.score, reverse=True)
|
||||
|
||||
return results[: context.max_results]
|
||||
|
||||
def _extract_terms(self, text: str) -> list[str]:
|
||||
"""Extract searchable terms from text."""
|
||||
# Remove special characters and split
|
||||
clean = re.sub(r"[^\w\s-]", " ", text.lower())
|
||||
terms = clean.split()
|
||||
|
||||
# Filter out very short terms
|
||||
return [t for t in terms if len(t) >= 2]
|
||||
|
||||
def _calculate_match_score(
|
||||
self,
|
||||
procedure: Procedure,
|
||||
query_terms: list[str],
|
||||
query_lower: str,
|
||||
context: MatchContext,
|
||||
) -> tuple[float, list[str]]:
|
||||
"""
|
||||
Calculate match score between procedure and query.
|
||||
|
||||
Returns:
|
||||
Tuple of (score, matched_terms)
|
||||
"""
|
||||
score = 0.0
|
||||
matched: list[str] = []
|
||||
|
||||
trigger_lower = procedure.trigger_pattern.lower()
|
||||
name_lower = procedure.name.lower()
|
||||
|
||||
# Exact name match - high score
|
||||
if name_lower in query_lower or query_lower in name_lower:
|
||||
score += 0.5
|
||||
matched.append(f"name:{procedure.name}")
|
||||
|
||||
# Trigger pattern match
|
||||
if trigger_lower in query_lower or query_lower in trigger_lower:
|
||||
score += 0.4
|
||||
matched.append(f"trigger:{procedure.trigger_pattern[:30]}")
|
||||
|
||||
# Term-by-term matching
|
||||
for term in query_terms:
|
||||
if term in trigger_lower:
|
||||
score += 0.1
|
||||
matched.append(term)
|
||||
elif term in name_lower:
|
||||
score += 0.08
|
||||
matched.append(term)
|
||||
|
||||
# Boost for task keywords
|
||||
if term in self.TASK_KEYWORDS:
|
||||
if term in trigger_lower or term in name_lower:
|
||||
score += 0.05
|
||||
|
||||
# Task type match if provided
|
||||
if context.task_type:
|
||||
task_type_lower = context.task_type.lower()
|
||||
if task_type_lower in trigger_lower or task_type_lower in name_lower:
|
||||
score += 0.3
|
||||
matched.append(f"task_type:{context.task_type}")
|
||||
|
||||
# Regex pattern matching on trigger
|
||||
try:
|
||||
pattern = self._get_or_compile_pattern(trigger_lower)
|
||||
if pattern and pattern.search(query_lower):
|
||||
score += 0.25
|
||||
matched.append("pattern_match")
|
||||
except re.error:
|
||||
pass # Invalid regex, skip pattern matching
|
||||
|
||||
return min(1.0, score), matched
|
||||
|
||||
def _get_or_compile_pattern(self, pattern: str) -> re.Pattern[str] | None:
|
||||
"""Get or compile a regex pattern with caching."""
|
||||
if pattern in self._compiled_patterns:
|
||||
return self._compiled_patterns[pattern]
|
||||
|
||||
# Only compile if it looks like a regex pattern
|
||||
if not any(c in pattern for c in r"\.*+?[]{}|()^$"):
|
||||
return None
|
||||
|
||||
try:
|
||||
compiled = re.compile(pattern, re.IGNORECASE)
|
||||
self._compiled_patterns[pattern] = compiled
|
||||
return compiled
|
||||
except re.error:
|
||||
return None
|
||||
|
||||
def rank_by_relevance(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
task_type: str,
|
||||
) -> list[Procedure]:
|
||||
"""
|
||||
Rank procedures by relevance to a task type.
|
||||
|
||||
Args:
|
||||
procedures: Procedures to rank
|
||||
task_type: Task type for relevance
|
||||
|
||||
Returns:
|
||||
Procedures sorted by relevance
|
||||
"""
|
||||
context = MatchContext(
|
||||
query=task_type,
|
||||
task_type=task_type,
|
||||
min_score=0.0,
|
||||
max_results=len(procedures),
|
||||
)
|
||||
|
||||
results = self.match(procedures, context)
|
||||
return [r.procedure for r in results]
|
||||
|
||||
def suggest_procedures(
|
||||
self,
|
||||
procedures: list[Procedure],
|
||||
query: str,
|
||||
min_success_rate: float = 0.5,
|
||||
max_suggestions: int = 3,
|
||||
) -> list[MatchResult]:
|
||||
"""
|
||||
Suggest the best procedures for a query.
|
||||
|
||||
Only suggests procedures with sufficient success rate.
|
||||
|
||||
Args:
|
||||
procedures: Available procedures
|
||||
query: Query/context
|
||||
min_success_rate: Minimum success rate to suggest
|
||||
max_suggestions: Maximum suggestions
|
||||
|
||||
Returns:
|
||||
List of procedure suggestions
|
||||
"""
|
||||
context = MatchContext(
|
||||
query=query,
|
||||
max_results=max_suggestions,
|
||||
min_score=0.2,
|
||||
require_success_rate=min_success_rate,
|
||||
)
|
||||
|
||||
return self.match(procedures, context)
|
||||
|
||||
|
||||
# Singleton matcher instance
|
||||
_matcher: ProcedureMatcher | None = None
|
||||
|
||||
|
||||
def get_procedure_matcher() -> ProcedureMatcher:
|
||||
"""Get the singleton procedure matcher instance."""
|
||||
global _matcher
|
||||
if _matcher is None:
|
||||
_matcher = ProcedureMatcher()
|
||||
return _matcher
|
||||
Reference in New Issue
Block a user