forked from cardosofelipe/fast-next-template
feat(knowledge-base): implement Knowledge Base MCP Server (#57)
Implements RAG capabilities with pgvector for semantic search: - Intelligent chunking strategies (code-aware, markdown-aware, text) - Semantic search with vector similarity (HNSW index) - Keyword search with PostgreSQL full-text search - Hybrid search using Reciprocal Rank Fusion (RRF) - Redis caching for embeddings - Collection management (ingest, search, delete, stats) - FastMCP tools: search_knowledge, ingest_content, delete_content, list_collections, get_collection_stats, update_document Testing: - 128 comprehensive tests covering all components - 58% code coverage (database integration tests use mocks) - Passes ruff linting and mypy type checking 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
19
mcp-servers/knowledge-base/chunking/__init__.py
Normal file
19
mcp-servers/knowledge-base/chunking/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
"""
|
||||
Chunking module for Knowledge Base MCP Server.
|
||||
|
||||
Provides intelligent content chunking for different file types
|
||||
with overlap and context preservation.
|
||||
"""
|
||||
|
||||
from chunking.base import BaseChunker, ChunkerFactory
|
||||
from chunking.code import CodeChunker
|
||||
from chunking.markdown import MarkdownChunker
|
||||
from chunking.text import TextChunker
|
||||
|
||||
__all__ = [
|
||||
"BaseChunker",
|
||||
"ChunkerFactory",
|
||||
"CodeChunker",
|
||||
"MarkdownChunker",
|
||||
"TextChunker",
|
||||
]
|
||||
Reference in New Issue
Block a user