forked from cardosofelipe/fast-next-template
feat(context): implement token budget management (Phase 2)
Add TokenCalculator with LLM Gateway integration for accurate token counting with in-memory caching and fallback character-based estimation. Implement TokenBudget for tracking allocations per context type with budget enforcement, and BudgetAllocator for creating budgets based on model context window sizes. - TokenCalculator: MCP integration, caching, model-specific ratios - TokenBudget: allocation tracking, can_fit/allocate/deallocate/reset - BudgetAllocator: model context sizes, budget creation and adjustment - 35 comprehensive tests covering all budget functionality Part of #61 - Context Management Engine 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
@@ -14,11 +14,18 @@ Usage:
|
||||
ConversationContext,
|
||||
TaskContext,
|
||||
ToolContext,
|
||||
TokenBudget,
|
||||
BudgetAllocator,
|
||||
TokenCalculator,
|
||||
)
|
||||
|
||||
# Get settings
|
||||
settings = get_context_settings()
|
||||
|
||||
# Create budget for a model
|
||||
allocator = BudgetAllocator(settings)
|
||||
budget = allocator.create_budget_for_model("claude-3-sonnet")
|
||||
|
||||
# Create context instances
|
||||
system_ctx = SystemContext.create_persona(
|
||||
name="Code Assistant",
|
||||
@@ -27,6 +34,13 @@ Usage:
|
||||
)
|
||||
"""
|
||||
|
||||
# Budget Management
|
||||
from .budget import (
|
||||
BudgetAllocator,
|
||||
TokenBudget,
|
||||
TokenCalculator,
|
||||
)
|
||||
|
||||
# Configuration
|
||||
from .config import (
|
||||
ContextSettings,
|
||||
@@ -67,6 +81,10 @@ from .types import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# Budget Management
|
||||
"BudgetAllocator",
|
||||
"TokenBudget",
|
||||
"TokenCalculator",
|
||||
# Configuration
|
||||
"ContextSettings",
|
||||
"get_context_settings",
|
||||
|
||||
@@ -3,3 +3,12 @@ Token Budget Management Module.
|
||||
|
||||
Provides token counting and budget allocation.
|
||||
"""
|
||||
|
||||
from .allocator import BudgetAllocator, TokenBudget
|
||||
from .calculator import TokenCalculator
|
||||
|
||||
__all__ = [
|
||||
"BudgetAllocator",
|
||||
"TokenBudget",
|
||||
"TokenCalculator",
|
||||
]
|
||||
|
||||
433
backend/app/services/context/budget/allocator.py
Normal file
433
backend/app/services/context/budget/allocator.py
Normal file
@@ -0,0 +1,433 @@
|
||||
"""
|
||||
Token Budget Allocator for Context Management.
|
||||
|
||||
Manages token budget allocation across context types.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
from ..config import ContextSettings, get_context_settings
|
||||
from ..exceptions import BudgetExceededError
|
||||
from ..types import ContextType
|
||||
|
||||
|
||||
@dataclass
|
||||
class TokenBudget:
|
||||
"""
|
||||
Token budget allocation and tracking.
|
||||
|
||||
Tracks allocated tokens per context type and
|
||||
monitors usage to prevent overflows.
|
||||
"""
|
||||
|
||||
# Total budget
|
||||
total: int
|
||||
|
||||
# Allocated per type
|
||||
system: int = 0
|
||||
task: int = 0
|
||||
knowledge: int = 0
|
||||
conversation: int = 0
|
||||
tools: int = 0
|
||||
response_reserve: int = 0
|
||||
buffer: int = 0
|
||||
|
||||
# Usage tracking
|
||||
used: dict[str, int] = field(default_factory=dict)
|
||||
|
||||
def __post_init__(self) -> None:
|
||||
"""Initialize usage tracking."""
|
||||
if not self.used:
|
||||
self.used = {ct.value: 0 for ct in ContextType}
|
||||
|
||||
def get_allocation(self, context_type: ContextType | str) -> int:
|
||||
"""
|
||||
Get allocated tokens for a context type.
|
||||
|
||||
Args:
|
||||
context_type: Context type to get allocation for
|
||||
|
||||
Returns:
|
||||
Allocated token count
|
||||
"""
|
||||
if isinstance(context_type, ContextType):
|
||||
context_type = context_type.value
|
||||
|
||||
allocation_map = {
|
||||
"system": self.system,
|
||||
"task": self.task,
|
||||
"knowledge": self.knowledge,
|
||||
"conversation": self.conversation,
|
||||
"tool": self.tools,
|
||||
}
|
||||
return allocation_map.get(context_type, 0)
|
||||
|
||||
def get_used(self, context_type: ContextType | str) -> int:
|
||||
"""
|
||||
Get used tokens for a context type.
|
||||
|
||||
Args:
|
||||
context_type: Context type to check
|
||||
|
||||
Returns:
|
||||
Used token count
|
||||
"""
|
||||
if isinstance(context_type, ContextType):
|
||||
context_type = context_type.value
|
||||
return self.used.get(context_type, 0)
|
||||
|
||||
def remaining(self, context_type: ContextType | str) -> int:
|
||||
"""
|
||||
Get remaining tokens for a context type.
|
||||
|
||||
Args:
|
||||
context_type: Context type to check
|
||||
|
||||
Returns:
|
||||
Remaining token count
|
||||
"""
|
||||
allocated = self.get_allocation(context_type)
|
||||
used = self.get_used(context_type)
|
||||
return max(0, allocated - used)
|
||||
|
||||
def total_remaining(self) -> int:
|
||||
"""
|
||||
Get total remaining tokens across all types.
|
||||
|
||||
Returns:
|
||||
Total remaining tokens
|
||||
"""
|
||||
total_used = sum(self.used.values())
|
||||
usable = self.total - self.response_reserve - self.buffer
|
||||
return max(0, usable - total_used)
|
||||
|
||||
def total_used(self) -> int:
|
||||
"""
|
||||
Get total used tokens.
|
||||
|
||||
Returns:
|
||||
Total used tokens
|
||||
"""
|
||||
return sum(self.used.values())
|
||||
|
||||
def can_fit(self, context_type: ContextType | str, tokens: int) -> bool:
|
||||
"""
|
||||
Check if tokens fit within budget for a type.
|
||||
|
||||
Args:
|
||||
context_type: Context type to check
|
||||
tokens: Number of tokens to fit
|
||||
|
||||
Returns:
|
||||
True if tokens fit within remaining budget
|
||||
"""
|
||||
return tokens <= self.remaining(context_type)
|
||||
|
||||
def allocate(
|
||||
self,
|
||||
context_type: ContextType | str,
|
||||
tokens: int,
|
||||
force: bool = False,
|
||||
) -> bool:
|
||||
"""
|
||||
Allocate (use) tokens from a context type's budget.
|
||||
|
||||
Args:
|
||||
context_type: Context type to allocate from
|
||||
tokens: Number of tokens to allocate
|
||||
force: If True, allow exceeding budget
|
||||
|
||||
Returns:
|
||||
True if allocation succeeded
|
||||
|
||||
Raises:
|
||||
BudgetExceededError: If tokens exceed budget and force=False
|
||||
"""
|
||||
if isinstance(context_type, ContextType):
|
||||
context_type = context_type.value
|
||||
|
||||
if not force and not self.can_fit(context_type, tokens):
|
||||
raise BudgetExceededError(
|
||||
message=f"Token budget exceeded for {context_type}",
|
||||
allocated=self.get_allocation(context_type),
|
||||
requested=self.get_used(context_type) + tokens,
|
||||
context_type=context_type,
|
||||
)
|
||||
|
||||
self.used[context_type] = self.used.get(context_type, 0) + tokens
|
||||
return True
|
||||
|
||||
def deallocate(
|
||||
self,
|
||||
context_type: ContextType | str,
|
||||
tokens: int,
|
||||
) -> None:
|
||||
"""
|
||||
Deallocate (return) tokens to a context type's budget.
|
||||
|
||||
Args:
|
||||
context_type: Context type to return to
|
||||
tokens: Number of tokens to return
|
||||
"""
|
||||
if isinstance(context_type, ContextType):
|
||||
context_type = context_type.value
|
||||
|
||||
current = self.used.get(context_type, 0)
|
||||
self.used[context_type] = max(0, current - tokens)
|
||||
|
||||
def reset(self) -> None:
|
||||
"""Reset all usage tracking."""
|
||||
self.used = {ct.value: 0 for ct in ContextType}
|
||||
|
||||
def utilization(self, context_type: ContextType | str | None = None) -> float:
|
||||
"""
|
||||
Get budget utilization percentage.
|
||||
|
||||
Args:
|
||||
context_type: Specific type or None for total
|
||||
|
||||
Returns:
|
||||
Utilization as a fraction (0.0 to 1.0+)
|
||||
"""
|
||||
if context_type is None:
|
||||
usable = self.total - self.response_reserve - self.buffer
|
||||
if usable <= 0:
|
||||
return 0.0
|
||||
return self.total_used() / usable
|
||||
|
||||
allocated = self.get_allocation(context_type)
|
||||
if allocated <= 0:
|
||||
return 0.0
|
||||
return self.get_used(context_type) / allocated
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert budget to dictionary."""
|
||||
return {
|
||||
"total": self.total,
|
||||
"allocations": {
|
||||
"system": self.system,
|
||||
"task": self.task,
|
||||
"knowledge": self.knowledge,
|
||||
"conversation": self.conversation,
|
||||
"tools": self.tools,
|
||||
"response_reserve": self.response_reserve,
|
||||
"buffer": self.buffer,
|
||||
},
|
||||
"used": dict(self.used),
|
||||
"remaining": {
|
||||
ct.value: self.remaining(ct) for ct in ContextType
|
||||
},
|
||||
"total_used": self.total_used(),
|
||||
"total_remaining": self.total_remaining(),
|
||||
"utilization": round(self.utilization(), 3),
|
||||
}
|
||||
|
||||
|
||||
class BudgetAllocator:
|
||||
"""
|
||||
Budget allocator for context management.
|
||||
|
||||
Creates token budgets based on configuration and
|
||||
model context window sizes.
|
||||
"""
|
||||
|
||||
def __init__(self, settings: ContextSettings | None = None) -> None:
|
||||
"""
|
||||
Initialize budget allocator.
|
||||
|
||||
Args:
|
||||
settings: Context settings (uses default if None)
|
||||
"""
|
||||
self._settings = settings or get_context_settings()
|
||||
|
||||
def create_budget(
|
||||
self,
|
||||
total_tokens: int,
|
||||
custom_allocations: dict[str, float] | None = None,
|
||||
) -> TokenBudget:
|
||||
"""
|
||||
Create a token budget with allocations.
|
||||
|
||||
Args:
|
||||
total_tokens: Total available tokens
|
||||
custom_allocations: Optional custom allocation percentages
|
||||
|
||||
Returns:
|
||||
TokenBudget with allocations set
|
||||
"""
|
||||
# Use custom or default allocations
|
||||
if custom_allocations:
|
||||
alloc = custom_allocations
|
||||
else:
|
||||
alloc = self._settings.get_budget_allocation()
|
||||
|
||||
return TokenBudget(
|
||||
total=total_tokens,
|
||||
system=int(total_tokens * alloc.get("system", 0.05)),
|
||||
task=int(total_tokens * alloc.get("task", 0.10)),
|
||||
knowledge=int(total_tokens * alloc.get("knowledge", 0.40)),
|
||||
conversation=int(total_tokens * alloc.get("conversation", 0.20)),
|
||||
tools=int(total_tokens * alloc.get("tools", 0.05)),
|
||||
response_reserve=int(total_tokens * alloc.get("response", 0.15)),
|
||||
buffer=int(total_tokens * alloc.get("buffer", 0.05)),
|
||||
)
|
||||
|
||||
def adjust_budget(
|
||||
self,
|
||||
budget: TokenBudget,
|
||||
context_type: ContextType | str,
|
||||
adjustment: int,
|
||||
) -> TokenBudget:
|
||||
"""
|
||||
Adjust a specific allocation in a budget.
|
||||
|
||||
Takes tokens from buffer and adds to specified type.
|
||||
|
||||
Args:
|
||||
budget: Budget to adjust
|
||||
context_type: Type to adjust
|
||||
adjustment: Positive to increase, negative to decrease
|
||||
|
||||
Returns:
|
||||
Adjusted budget
|
||||
"""
|
||||
if isinstance(context_type, ContextType):
|
||||
context_type = context_type.value
|
||||
|
||||
# Calculate adjustment (limited by buffer)
|
||||
if adjustment > 0:
|
||||
# Taking from buffer
|
||||
actual_adjustment = min(adjustment, budget.buffer)
|
||||
budget.buffer -= actual_adjustment
|
||||
else:
|
||||
# Returning to buffer
|
||||
actual_adjustment = adjustment
|
||||
|
||||
# Apply to target type
|
||||
if context_type == "system":
|
||||
budget.system = max(0, budget.system + actual_adjustment)
|
||||
elif context_type == "task":
|
||||
budget.task = max(0, budget.task + actual_adjustment)
|
||||
elif context_type == "knowledge":
|
||||
budget.knowledge = max(0, budget.knowledge + actual_adjustment)
|
||||
elif context_type == "conversation":
|
||||
budget.conversation = max(0, budget.conversation + actual_adjustment)
|
||||
elif context_type == "tool":
|
||||
budget.tools = max(0, budget.tools + actual_adjustment)
|
||||
|
||||
return budget
|
||||
|
||||
def rebalance_budget(
|
||||
self,
|
||||
budget: TokenBudget,
|
||||
prioritize: list[ContextType] | None = None,
|
||||
) -> TokenBudget:
|
||||
"""
|
||||
Rebalance budget based on actual usage.
|
||||
|
||||
Moves unused allocations to prioritized types.
|
||||
|
||||
Args:
|
||||
budget: Budget to rebalance
|
||||
prioritize: Types to prioritize (in order)
|
||||
|
||||
Returns:
|
||||
Rebalanced budget
|
||||
"""
|
||||
if prioritize is None:
|
||||
prioritize = [ContextType.KNOWLEDGE, ContextType.TASK, ContextType.SYSTEM]
|
||||
|
||||
# Calculate unused tokens per type
|
||||
unused: dict[str, int] = {}
|
||||
for ct in ContextType:
|
||||
remaining = budget.remaining(ct)
|
||||
if remaining > 0:
|
||||
unused[ct.value] = remaining
|
||||
|
||||
# Calculate total reclaimable (excluding prioritized types)
|
||||
prioritize_values = {ct.value for ct in prioritize}
|
||||
reclaimable = sum(
|
||||
tokens for ct, tokens in unused.items()
|
||||
if ct not in prioritize_values
|
||||
)
|
||||
|
||||
# Redistribute to prioritized types that are near capacity
|
||||
for ct in prioritize:
|
||||
ct_value = ct.value
|
||||
utilization = budget.utilization(ct)
|
||||
|
||||
if utilization > 0.8: # Near capacity
|
||||
# Give more tokens from reclaimable pool
|
||||
bonus = min(reclaimable, budget.get_allocation(ct) // 2)
|
||||
self.adjust_budget(budget, ct, bonus)
|
||||
reclaimable -= bonus
|
||||
|
||||
if reclaimable <= 0:
|
||||
break
|
||||
|
||||
return budget
|
||||
|
||||
def get_model_context_size(self, model: str) -> int:
|
||||
"""
|
||||
Get context window size for a model.
|
||||
|
||||
Args:
|
||||
model: Model name
|
||||
|
||||
Returns:
|
||||
Context window size in tokens
|
||||
"""
|
||||
# Common model context sizes
|
||||
context_sizes = {
|
||||
"claude-3-opus": 200000,
|
||||
"claude-3-sonnet": 200000,
|
||||
"claude-3-haiku": 200000,
|
||||
"claude-3-5-sonnet": 200000,
|
||||
"claude-3-5-haiku": 200000,
|
||||
"claude-opus-4": 200000,
|
||||
"gpt-4-turbo": 128000,
|
||||
"gpt-4": 8192,
|
||||
"gpt-4-32k": 32768,
|
||||
"gpt-4o": 128000,
|
||||
"gpt-4o-mini": 128000,
|
||||
"gpt-3.5-turbo": 16385,
|
||||
"gemini-1.5-pro": 2000000,
|
||||
"gemini-1.5-flash": 1000000,
|
||||
"gemini-2.0-flash": 1000000,
|
||||
"qwen-plus": 32000,
|
||||
"qwen-turbo": 8000,
|
||||
"deepseek-chat": 64000,
|
||||
"deepseek-reasoner": 64000,
|
||||
}
|
||||
|
||||
# Check exact match first
|
||||
model_lower = model.lower()
|
||||
if model_lower in context_sizes:
|
||||
return context_sizes[model_lower]
|
||||
|
||||
# Check prefix match
|
||||
for model_name, size in context_sizes.items():
|
||||
if model_lower.startswith(model_name):
|
||||
return size
|
||||
|
||||
# Default fallback
|
||||
return 8192
|
||||
|
||||
def create_budget_for_model(
|
||||
self,
|
||||
model: str,
|
||||
custom_allocations: dict[str, float] | None = None,
|
||||
) -> TokenBudget:
|
||||
"""
|
||||
Create a budget based on model's context window.
|
||||
|
||||
Args:
|
||||
model: Model name
|
||||
custom_allocations: Optional custom allocation percentages
|
||||
|
||||
Returns:
|
||||
TokenBudget sized for the model
|
||||
"""
|
||||
context_size = self.get_model_context_size(model)
|
||||
return self.create_budget(context_size, custom_allocations)
|
||||
284
backend/app/services/context/budget/calculator.py
Normal file
284
backend/app/services/context/budget/calculator.py
Normal file
@@ -0,0 +1,284 @@
|
||||
"""
|
||||
Token Calculator for Context Management.
|
||||
|
||||
Provides token counting with caching and fallback estimation.
|
||||
Integrates with LLM Gateway for accurate counts.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any, Protocol
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from app.services.mcp.client_manager import MCPClientManager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TokenCounterProtocol(Protocol):
|
||||
"""Protocol for token counting implementations."""
|
||||
|
||||
async def count_tokens(
|
||||
self,
|
||||
text: str,
|
||||
model: str | None = None,
|
||||
) -> int:
|
||||
"""Count tokens in text."""
|
||||
...
|
||||
|
||||
|
||||
class TokenCalculator:
|
||||
"""
|
||||
Token calculator with LLM Gateway integration.
|
||||
|
||||
Features:
|
||||
- In-memory caching for repeated text
|
||||
- Fallback to character-based estimation
|
||||
- Model-specific counting when possible
|
||||
|
||||
The calculator uses the LLM Gateway's count_tokens tool
|
||||
for accurate counting, with a local cache to avoid
|
||||
repeated calls for the same content.
|
||||
"""
|
||||
|
||||
# Default characters per token ratio for estimation
|
||||
DEFAULT_CHARS_PER_TOKEN = 4.0
|
||||
|
||||
# Model-specific ratios (more accurate estimation)
|
||||
MODEL_CHAR_RATIOS: dict[str, float] = {
|
||||
"claude": 3.5,
|
||||
"gpt-4": 4.0,
|
||||
"gpt-3.5": 4.0,
|
||||
"gemini": 4.0,
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mcp_manager: "MCPClientManager | None" = None,
|
||||
project_id: str = "system",
|
||||
agent_id: str = "context-engine",
|
||||
cache_enabled: bool = True,
|
||||
cache_max_size: int = 10000,
|
||||
) -> None:
|
||||
"""
|
||||
Initialize token calculator.
|
||||
|
||||
Args:
|
||||
mcp_manager: MCP client manager for LLM Gateway calls
|
||||
project_id: Project ID for LLM Gateway calls
|
||||
agent_id: Agent ID for LLM Gateway calls
|
||||
cache_enabled: Whether to enable in-memory caching
|
||||
cache_max_size: Maximum cache entries
|
||||
"""
|
||||
self._mcp = mcp_manager
|
||||
self._project_id = project_id
|
||||
self._agent_id = agent_id
|
||||
self._cache_enabled = cache_enabled
|
||||
self._cache_max_size = cache_max_size
|
||||
|
||||
# In-memory cache: hash(model:text) -> token_count
|
||||
self._cache: dict[str, int] = {}
|
||||
self._cache_hits = 0
|
||||
self._cache_misses = 0
|
||||
|
||||
def _get_cache_key(self, text: str, model: str | None) -> str:
|
||||
"""Generate cache key from text and model."""
|
||||
# Use hash for efficient storage
|
||||
content = f"{model or 'default'}:{text}"
|
||||
return hashlib.sha256(content.encode()).hexdigest()[:32]
|
||||
|
||||
def _check_cache(self, cache_key: str) -> int | None:
|
||||
"""Check cache for existing count."""
|
||||
if not self._cache_enabled:
|
||||
return None
|
||||
|
||||
if cache_key in self._cache:
|
||||
self._cache_hits += 1
|
||||
return self._cache[cache_key]
|
||||
|
||||
self._cache_misses += 1
|
||||
return None
|
||||
|
||||
def _store_cache(self, cache_key: str, count: int) -> None:
|
||||
"""Store count in cache."""
|
||||
if not self._cache_enabled:
|
||||
return
|
||||
|
||||
# Simple LRU-like eviction: remove oldest entries when full
|
||||
if len(self._cache) >= self._cache_max_size:
|
||||
# Remove first 10% of entries
|
||||
entries_to_remove = self._cache_max_size // 10
|
||||
keys_to_remove = list(self._cache.keys())[:entries_to_remove]
|
||||
for key in keys_to_remove:
|
||||
del self._cache[key]
|
||||
|
||||
self._cache[cache_key] = count
|
||||
|
||||
def estimate_tokens(self, text: str, model: str | None = None) -> int:
|
||||
"""
|
||||
Estimate token count based on character count.
|
||||
|
||||
This is a fast fallback when LLM Gateway is unavailable.
|
||||
|
||||
Args:
|
||||
text: Text to count
|
||||
model: Optional model for more accurate ratio
|
||||
|
||||
Returns:
|
||||
Estimated token count
|
||||
"""
|
||||
if not text:
|
||||
return 0
|
||||
|
||||
# Get model-specific ratio
|
||||
ratio = self.DEFAULT_CHARS_PER_TOKEN
|
||||
if model:
|
||||
model_lower = model.lower()
|
||||
for model_prefix, model_ratio in self.MODEL_CHAR_RATIOS.items():
|
||||
if model_prefix in model_lower:
|
||||
ratio = model_ratio
|
||||
break
|
||||
|
||||
return max(1, int(len(text) / ratio))
|
||||
|
||||
async def count_tokens(
|
||||
self,
|
||||
text: str,
|
||||
model: str | None = None,
|
||||
) -> int:
|
||||
"""
|
||||
Count tokens in text.
|
||||
|
||||
Uses LLM Gateway for accurate counts with fallback to estimation.
|
||||
|
||||
Args:
|
||||
text: Text to count
|
||||
model: Optional model for accurate counting
|
||||
|
||||
Returns:
|
||||
Token count
|
||||
"""
|
||||
if not text:
|
||||
return 0
|
||||
|
||||
# Check cache first
|
||||
cache_key = self._get_cache_key(text, model)
|
||||
cached = self._check_cache(cache_key)
|
||||
if cached is not None:
|
||||
return cached
|
||||
|
||||
# Try LLM Gateway
|
||||
if self._mcp is not None:
|
||||
try:
|
||||
result = await self._mcp.call_tool(
|
||||
server="llm-gateway",
|
||||
tool="count_tokens",
|
||||
args={
|
||||
"project_id": self._project_id,
|
||||
"agent_id": self._agent_id,
|
||||
"text": text,
|
||||
"model": model,
|
||||
},
|
||||
)
|
||||
|
||||
# Parse result
|
||||
if result.success and result.data:
|
||||
count = self._parse_token_count(result.data)
|
||||
if count is not None:
|
||||
self._store_cache(cache_key, count)
|
||||
return count
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"LLM Gateway token count failed, using estimation: {e}")
|
||||
|
||||
# Fallback to estimation
|
||||
count = self.estimate_tokens(text, model)
|
||||
self._store_cache(cache_key, count)
|
||||
return count
|
||||
|
||||
def _parse_token_count(self, data: Any) -> int | None:
|
||||
"""Parse token count from LLM Gateway response."""
|
||||
if isinstance(data, dict):
|
||||
if "token_count" in data:
|
||||
return int(data["token_count"])
|
||||
if "tokens" in data:
|
||||
return int(data["tokens"])
|
||||
if "count" in data:
|
||||
return int(data["count"])
|
||||
|
||||
if isinstance(data, int):
|
||||
return data
|
||||
|
||||
if isinstance(data, str):
|
||||
# Try to parse from text content
|
||||
try:
|
||||
# Handle {"token_count": 123} or just "123"
|
||||
import json
|
||||
|
||||
parsed = json.loads(data)
|
||||
if isinstance(parsed, dict) and "token_count" in parsed:
|
||||
return int(parsed["token_count"])
|
||||
if isinstance(parsed, int):
|
||||
return parsed
|
||||
except (json.JSONDecodeError, ValueError):
|
||||
# Try direct int conversion
|
||||
try:
|
||||
return int(data)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
async def count_tokens_batch(
|
||||
self,
|
||||
texts: list[str],
|
||||
model: str | None = None,
|
||||
) -> list[int]:
|
||||
"""
|
||||
Count tokens for multiple texts.
|
||||
|
||||
Efficient batch counting with caching.
|
||||
|
||||
Args:
|
||||
texts: List of texts to count
|
||||
model: Optional model for accurate counting
|
||||
|
||||
Returns:
|
||||
List of token counts (same order as input)
|
||||
"""
|
||||
results: list[int] = []
|
||||
|
||||
for text in texts:
|
||||
count = await self.count_tokens(text, model)
|
||||
results.append(count)
|
||||
|
||||
return results
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
"""Clear the token count cache."""
|
||||
self._cache.clear()
|
||||
self._cache_hits = 0
|
||||
self._cache_misses = 0
|
||||
|
||||
def get_cache_stats(self) -> dict[str, Any]:
|
||||
"""Get cache statistics."""
|
||||
total = self._cache_hits + self._cache_misses
|
||||
hit_rate = self._cache_hits / total if total > 0 else 0.0
|
||||
|
||||
return {
|
||||
"enabled": self._cache_enabled,
|
||||
"size": len(self._cache),
|
||||
"max_size": self._cache_max_size,
|
||||
"hits": self._cache_hits,
|
||||
"misses": self._cache_misses,
|
||||
"hit_rate": round(hit_rate, 3),
|
||||
}
|
||||
|
||||
def set_mcp_manager(self, mcp_manager: "MCPClientManager") -> None:
|
||||
"""
|
||||
Set the MCP manager (for lazy initialization).
|
||||
|
||||
Args:
|
||||
mcp_manager: MCP client manager instance
|
||||
"""
|
||||
self._mcp = mcp_manager
|
||||
Reference in New Issue
Block a user