""" Syndarix LLM Gateway MCP Server. Provides unified LLM access with: - Multi-provider support (Claude, GPT, Gemini, Qwen, DeepSeek) - Automatic failover chains - Cost tracking via LiteLLM callbacks - Model group routing (high-reasoning, code-generation, fast-response, cost-optimized) Per ADR-004: LLM Provider Abstraction. """ import os from fastmcp import FastMCP # Create MCP server mcp = FastMCP( "syndarix-llm-gateway", description="Unified LLM access with failover and cost tracking", ) # Configuration REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379/0") DATABASE_URL = os.getenv("DATABASE_URL") @mcp.tool() async def chat_completion( project_id: str, agent_id: str, messages: list[dict], model_group: str = "high-reasoning", max_tokens: int = 4096, temperature: float = 0.7, ) -> dict: """ Generate a chat completion using the specified model group. Args: project_id: UUID of the project (required for cost attribution) agent_id: UUID of the agent instance making the request messages: List of message dicts with 'role' and 'content' model_group: Model routing group (high-reasoning, code-generation, fast-response, cost-optimized, self-hosted) max_tokens: Maximum tokens to generate temperature: Sampling temperature (0.0-2.0) Returns: Completion response with content and usage statistics """ # TODO: Implement with LiteLLM # 1. Map model_group to primary model + fallbacks # 2. Check project budget before making request # 3. Make completion request with failover # 4. Log usage via callback # 5. Return response return { "status": "not_implemented", "project_id": project_id, "agent_id": agent_id, "model_group": model_group, } @mcp.tool() async def get_embeddings( project_id: str, texts: list[str], model: str = "text-embedding-3-small", ) -> dict: """ Generate embeddings for the given texts. Args: project_id: UUID of the project (required for cost attribution) texts: List of texts to embed model: Embedding model to use Returns: List of embedding vectors """ # TODO: Implement with LiteLLM embeddings return { "status": "not_implemented", "project_id": project_id, "text_count": len(texts), } @mcp.tool() async def get_budget_status(project_id: str) -> dict: """ Get current budget status for a project. Args: project_id: UUID of the project Returns: Budget status with usage, limits, and percentage """ # TODO: Implement budget check from Redis return { "status": "not_implemented", "project_id": project_id, } @mcp.tool() async def list_available_models() -> dict: """ List all available models and their capabilities. Returns: Dictionary of model groups and available models """ return { "model_groups": { "high-reasoning": { "primary": "claude-opus-4-5", "fallbacks": ["gpt-5.1-codex-max", "gemini-3-pro"], "description": "Complex analysis, architecture decisions", }, "code-generation": { "primary": "gpt-5.1-codex-max", "fallbacks": ["claude-opus-4-5", "deepseek-v3.2"], "description": "Code writing and refactoring", }, "fast-response": { "primary": "gemini-3-flash", "fallbacks": ["qwen3-235b", "deepseek-v3.2"], "description": "Quick tasks, simple queries", }, "cost-optimized": { "primary": "qwen3-235b", "fallbacks": ["deepseek-v3.2"], "description": "High-volume, non-critical tasks", }, "self-hosted": { "primary": "deepseek-v3.2", "fallbacks": ["qwen3-235b"], "description": "Privacy-sensitive, air-gapped", }, } } if __name__ == "__main__": mcp.run()