# Syndarix Architecture Deep Analysis **Version:** 1.0 **Date:** 2025-12-29 **Status:** Draft - Architectural Thinking --- ## Executive Summary This document captures deep architectural thinking about Syndarix beyond the immediate spikes. It addresses complex challenges that arise when building a truly autonomous multi-agent system and proposes solutions based on first principles. --- ## 1. Agent Memory and Context Management ### The Challenge Agents in Syndarix may work on projects for weeks or months. LLM context windows are finite (128K-200K tokens), but project context grows unboundedly. How do we maintain coherent agent "memory" over time? ### Analysis **Context Window Constraints:** | Model | Context Window | Practical Limit (with tools) | |-------|---------------|------------------------------| | Claude 3.5 Sonnet | 200K tokens | ~150K usable | | GPT-4 Turbo | 128K tokens | ~100K usable | | Llama 3 (70B) | 8K-128K tokens | ~80K usable | **Memory Types Needed:** 1. **Working Memory** - Current task context (fits in context window) 2. **Short-term Memory** - Recent conversation history (RAG-retrievable) 3. **Long-term Memory** - Project knowledge, past decisions (RAG + summarization) 4. **Episodic Memory** - Specific past events/mistakes to learn from ### Proposed Architecture ``` ┌─────────────────────────────────────────────────────────────────┐ │ Agent Memory System │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │ │ Working │ │ Short-term │ │ Long-term │ │ │ │ Memory │ │ Memory │ │ Memory │ │ │ │ (Context) │ │ (Redis) │ │ (pgvector) │ │ │ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │ │ │ │ │ │ │ └───────────────────┼──────────────────┘ │ │ │ │ │ ▼ │ │ ┌──────────────────────────────────────────────────────────┐ │ │ │ Context Assembler │ │ │ │ │ │ │ │ 1. System prompt (agent personality, role) │ │ │ │ 2. Project context (from long-term memory) │ │ │ │ 3. Task context (current issue, requirements) │ │ │ │ 4. Relevant history (from short-term memory) │ │ │ │ 5. User message │ │ │ │ │ │ │ │ Total: Fit within context window limits │ │ │ └──────────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` **Context Compression Strategy:** ```python class ContextManager: """Manages agent context to fit within LLM limits.""" MAX_CONTEXT_TOKENS = 100_000 # Leave room for response async def build_context( self, agent: AgentInstance, task: Task, user_message: str ) -> list[Message]: # Fixed costs system_prompt = self._get_system_prompt(agent) # ~2K tokens task_context = self._get_task_context(task) # ~1K tokens # Variable budget remaining = self.MAX_CONTEXT_TOKENS - token_count(system_prompt, task_context, user_message) # Allocate remaining to memories long_term = await self._query_long_term(agent, task, budget=remaining * 0.4) short_term = await self._get_short_term(agent, budget=remaining * 0.4) episodic = await self._get_relevant_episodes(agent, task, budget=remaining * 0.2) return self._assemble_messages( system_prompt, task_context, long_term, short_term, episodic, user_message ) ``` **Conversation Summarization:** - After every N turns (e.g., 10), summarize conversation and archive - Use smaller/cheaper model for summarization - Store summaries in pgvector for semantic retrieval ### Recommendation Implement a **tiered memory system** with automatic context compression and semantic retrieval. Use Redis for hot short-term memory, pgvector for cold long-term memory, and automatic summarization to prevent context overflow. --- ## 2. Cross-Project Knowledge Sharing ### The Challenge Each project has isolated knowledge, but agents could benefit from cross-project learnings: - Common patterns (authentication, testing, CI/CD) - Technology expertise (how to configure Kubernetes) - Anti-patterns (what didn't work before) ### Analysis **Privacy Considerations:** - Client data must remain isolated (contractual, legal) - Technical patterns are generally shareable - Need clear data classification **Knowledge Categories:** | Category | Scope | Examples | |----------|-------|----------| | **Client Data** | Project-only | Requirements, business logic, code | | **Technical Patterns** | Global | Best practices, configurations | | **Agent Learnings** | Global | What approaches worked/failed | | **Anti-patterns** | Global | Common mistakes to avoid | ### Proposed Architecture ``` ┌─────────────────────────────────────────────────────────────────┐ │ Knowledge Graph │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ GLOBAL KNOWLEDGE │ │ │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │ │ │ │ Patterns │ │ Anti-patterns│ │ Expertise │ │ │ │ │ │ Library │ │ Library │ │ Index │ │ │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ └─────────────────────────────────────────────────────────┘ │ │ ▲ │ │ │ Curated extraction │ │ │ │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │ │ Project A │ │ Project B │ │ Project C │ │ │ │ Knowledge │ │ Knowledge │ │ Knowledge │ │ │ │ (Isolated) │ │ (Isolated) │ │ (Isolated) │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` **Knowledge Extraction Pipeline:** ```python class KnowledgeExtractor: """Extracts shareable learnings from project work.""" async def extract_learnings(self, project_id: str) -> list[Learning]: """ Run periodically or after sprints to extract learnings. Human review required before promoting to global. """ # Get completed work completed_issues = await self.get_completed_issues(project_id) # Extract patterns using LLM patterns = await self.llm.extract_patterns( completed_issues, categories=["architecture", "testing", "deployment", "security"] ) # Classify privacy for pattern in patterns: pattern.privacy_level = await self.llm.classify_privacy(pattern) # Return only shareable patterns for review return [p for p in patterns if p.privacy_level == "public"] ``` ### Recommendation Implement **privacy-aware knowledge extraction** with human review gate. Project knowledge stays isolated by default; only explicitly approved patterns flow to global knowledge. --- ## 3. Agent Specialization vs Generalization Trade-offs ### The Challenge Should each agent type be highly specialized (depth) or have overlapping capabilities (breadth)? ### Analysis **Specialization Benefits:** - Deeper expertise in domain - Cleaner system prompts - Less confusion about responsibilities - Easier to optimize prompts per role **Generalization Benefits:** - Fewer agent types to maintain - Smoother handoffs (shared context) - More flexible team composition - Graceful degradation if agent unavailable **Current Agent Types (10):** | Role | Primary Domain | Potential Overlap | |------|---------------|-------------------| | Product Owner | Requirements | Business Analyst | | Business Analyst | Documentation | Product Owner | | Project Manager | Planning | Product Owner | | Software Architect | Design | Senior Engineer | | Software Engineer | Coding | Architect, QA | | UI/UX Designer | Interface | Frontend Engineer | | QA Engineer | Testing | Software Engineer | | DevOps Engineer | Infrastructure | Senior Engineer | | AI/ML Engineer | ML/AI | Software Engineer | | Security Expert | Security | All | ### Proposed Approach: Layered Specialization ``` ┌─────────────────────────────────────────────────────────────────┐ │ Agent Capability Layers │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ Layer 3: Role-Specific Expertise │ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │ │ Product │ │ Architect│ │Engineer │ │ QA │ │ │ │ Owner │ │ │ │ │ │ │ │ │ └────┬────┘ └────┬────┘ └────┬────┘ └────┬────┘ │ │ │ │ │ │ │ │ Layer 2: Shared Professional Skills │ │ ┌──────────────────────────────────────────────────────┐ │ │ │ Technical Communication | Code Understanding | Git │ │ │ │ Documentation | Research | Problem Decomposition │ │ │ └──────────────────────────────────────────────────────┘ │ │ │ │ │ Layer 1: Foundation Model Capabilities │ │ ┌──────────────────────────────────────────────────────┐ │ │ │ Reasoning | Analysis | Writing | Coding (LLM Base) │ │ │ └──────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` **Capability Inheritance:** ```python class AgentTypeBuilder: """Builds agent types with layered capabilities.""" BASE_CAPABILITIES = [ "reasoning", "analysis", "writing", "coding_assist" ] PROFESSIONAL_SKILLS = [ "technical_communication", "code_understanding", "git_operations", "documentation", "research" ] ROLE_SPECIFIC = { "ENGINEER": ["code_generation", "code_review", "testing", "debugging"], "ARCHITECT": ["system_design", "adr_writing", "tech_selection"], "QA": ["test_planning", "test_automation", "bug_reporting"], # ... } def build_capabilities(self, role: AgentRole) -> list[str]: return ( self.BASE_CAPABILITIES + self.PROFESSIONAL_SKILLS + self.ROLE_SPECIFIC[role] ) ``` ### Recommendation Adopt **layered specialization** where all agents share foundational and professional capabilities, with role-specific expertise on top. This enables smooth collaboration while maintaining clear responsibilities. --- ## 4. Human-Agent Collaboration Model ### The Challenge Beyond approval gates, how do humans effectively collaborate with autonomous agents during active work? ### Interaction Patterns | Pattern | Use Case | Frequency | |---------|----------|-----------| | **Approval** | Confirm before action | Per checkpoint | | **Guidance** | Steer direction | On-demand | | **Override** | Correct mistake | Rare | | **Pair Working** | Work together | Optional | | **Review** | Evaluate output | Post-completion | ### Proposed Collaboration Interface ``` ┌─────────────────────────────────────────────────────────────────┐ │ Human-Agent Collaboration Dashboard │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ Activity Stream │ │ │ │ ────────────────────────────────────────────────────── │ │ │ │ [10:23] Dave (Engineer) is implementing login API │ │ │ │ [10:24] Dave created auth/service.py │ │ │ │ [10:25] Dave is writing unit tests │ │ │ │ [LIVE] Dave: "I'm adding JWT validation. Using HS256..." │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ Intervention Panel │ │ │ │ │ │ │ │ [💬 Chat] [⏸️ Pause] [↩️ Undo Last] [📝 Guide] │ │ │ │ │ │ │ │ Quick Guidance: │ │ │ │ ┌─────────────────────────────────────────────────┐ │ │ │ │ │ "Use RS256 instead of HS256 for JWT signing" │ │ │ │ │ │ [Send] 📤 │ │ │ │ │ └─────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` **Intervention API:** ```python @router.post("/agents/{agent_id}/intervene") async def intervene( agent_id: UUID, intervention: InterventionRequest, current_user: User = Depends(get_current_user) ): """Allow human to intervene in agent work.""" match intervention.type: case "pause": await orchestrator.pause_agent(agent_id) case "resume": await orchestrator.resume_agent(agent_id) case "guide": await orchestrator.send_guidance(agent_id, intervention.message) case "undo": await orchestrator.undo_last_action(agent_id) case "override": await orchestrator.override_decision(agent_id, intervention.decision) ``` ### Recommendation Build a **real-time collaboration dashboard** with intervention capabilities. Humans should be able to observe, guide, pause, and correct agents without stopping the entire workflow. --- ## 5. Testing Strategy for Autonomous AI Systems ### The Challenge Traditional testing (unit, integration, E2E) doesn't capture autonomous agent behavior. How do we ensure quality? ### Testing Pyramid for AI Agents ``` ▲ ╱ ╲ ╱ ╲ ╱ E2E ╲ Agent Scenarios ╱ Agent ╲ (Full workflows) ╱─────────╲ ╱ Integration╲ Tool + LLM Integration ╱ (with mocks) ╲ (Deterministic responses) ╱─────────────────╲ ╱ Unit Tests ╲ Orchestrator, Services ╱ (no LLM needed) ╲ (Pure logic) ╱───────────────────────╲ ╱ Prompt Testing ╲ System prompt evaluation ╱ (LLM evals) ╲(Quality metrics) ╱─────────────────────────────╲ ``` ### Test Categories **1. Prompt Testing (Eval Framework):** ```python class PromptEvaluator: """Evaluate system prompt quality.""" TEST_CASES = [ EvalCase( name="requirement_extraction", input="Client wants a mobile app for food delivery", expected_behaviors=[ "asks clarifying questions", "identifies stakeholders", "considers non-functional requirements" ] ), EvalCase( name="code_review_thoroughness", input="Review this PR: [vulnerable SQL code]", expected_behaviors=[ "identifies SQL injection", "suggests parameterized queries", "mentions security best practices" ] ) ] async def evaluate(self, agent_type: AgentType) -> EvalReport: results = [] for case in self.TEST_CASES: response = await self.llm.complete( system=agent_type.system_prompt, user=case.input ) score = await self.judge_response(response, case.expected_behaviors) results.append(score) return EvalReport(results) ``` **2. Integration Testing (Mock LLM):** ```python @pytest.fixture def mock_llm(): """Deterministic LLM responses for integration tests.""" responses = { "analyze requirements": "...", "generate code": "def hello(): return 'world'", "review code": "LGTM" } return MockLLM(responses) async def test_story_implementation_workflow(mock_llm): """Test full workflow with predictable responses.""" orchestrator = AgentOrchestrator(llm=mock_llm) result = await orchestrator.execute_workflow( workflow="implement_story", inputs={"story_id": "TEST-123"} ) assert result.status == "completed" assert "hello" in result.artifacts["code"] ``` **3. Agent Scenario Testing:** ```python class AgentScenarioTest: """End-to-end agent behavior testing.""" @scenario("engineer_handles_bug_report") async def test_bug_resolution(self): """Engineer agent should fix bugs correctly.""" # Setup project = await create_test_project() engineer = await spawn_agent("engineer", project) # Act bug = await create_issue( project, title="Login button not working", type="bug" ) result = await engineer.handle(bug) # Assert assert result.pr_created assert result.tests_pass assert "button" in result.changes_summary.lower() ``` ### Recommendation Implement a **multi-layer testing strategy** with prompt evals, deterministic integration tests, and scenario-based agent testing. Use LLM-as-judge for evaluating open-ended responses. --- ## 6. Rollback and Recovery ### The Challenge Autonomous agents will make mistakes. How do we recover gracefully? ### Error Categories | Category | Example | Recovery Strategy | |----------|---------|-------------------| | **Reversible** | Wrong code generated | Revert commit, regenerate | | **Partially Reversible** | Merged bad PR | Revert PR, fix, re-merge | | **Non-reversible** | Deployed to production | Forward-fix or rollback deploy | | **External Side Effects** | Email sent to client | Apology + correction | ### Recovery Architecture ``` ┌─────────────────────────────────────────────────────────────────┐ │ Recovery System │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ Action Log │ │ │ │ ┌──────────────────────────────────────────────────┐ │ │ │ │ │ Action ID | Agent | Type | Reversible | State │ │ │ │ │ ├──────────────────────────────────────────────────┤ │ │ │ │ │ a-001 | Dave | commit | Yes | completed │ │ │ │ │ │ a-002 | Dave | push | Yes | completed │ │ │ │ │ │ a-003 | Dave | create_pr | Yes | completed │ │ │ │ │ │ a-004 | Kate | merge_pr | Partial | completed │ │ │ │ │ └──────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ Rollback Engine │ │ │ │ │ │ │ │ rollback_to(action_id) -> Reverses all actions after │ │ │ │ undo_action(action_id) -> Reverses single action │ │ │ │ compensate(action_id) -> Creates compensating action │ │ │ │ │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` **Action Logging:** ```python class ActionLog: """Immutable log of all agent actions for recovery.""" async def record( self, agent_id: UUID, action_type: str, inputs: dict, outputs: dict, reversible: bool, reverse_action: str | None = None ) -> ActionRecord: record = ActionRecord( id=uuid4(), agent_id=agent_id, action_type=action_type, inputs=inputs, outputs=outputs, reversible=reversible, reverse_action=reverse_action, timestamp=datetime.utcnow() ) await self.db.add(record) return record async def rollback_to(self, action_id: UUID) -> RollbackResult: """Rollback all actions after the given action.""" actions = await self.get_actions_after(action_id) results = [] for action in reversed(actions): if action.reversible: result = await self._execute_reverse(action) results.append(result) else: results.append(RollbackSkipped(action, reason="non-reversible")) return RollbackResult(results) ``` **Compensation Pattern:** ```python class CompensationEngine: """Handles compensating actions for non-reversible operations.""" COMPENSATIONS = { "email_sent": "send_correction_email", "deployment": "rollback_deployment", "external_api_call": "create_reversal_request" } async def compensate(self, action: ActionRecord) -> CompensationResult: if action.action_type in self.COMPENSATIONS: compensation = self.COMPENSATIONS[action.action_type] return await self._execute_compensation(compensation, action) else: return CompensationResult( status="manual_required", message=f"No automatic compensation for {action.action_type}" ) ``` ### Recommendation Implement **comprehensive action logging** with rollback capabilities. Define compensation strategies for non-reversible actions. Enable point-in-time recovery for project state. --- ## 7. Security Considerations for Autonomous Agents ### Threat Model | Threat | Risk | Mitigation | |--------|------|------------| | Agent executes malicious code | High | Sandboxed execution, code review gates | | Agent exfiltrates data | High | Network isolation, output filtering | | Prompt injection via user input | Medium | Input sanitization, prompt hardening | | Agent credential abuse | Medium | Least-privilege tokens, short TTL | | Agent collusion | Low | Independent agent instances, monitoring | ### Security Architecture ``` ┌─────────────────────────────────────────────────────────────────┐ │ Security Layers │ ├─────────────────────────────────────────────────────────────────┤ │ │ │ Layer 4: Output Filtering │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ - Code scan before commit │ │ │ │ - Secrets detection │ │ │ │ - Policy compliance check │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ │ Layer 3: Action Authorization │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ - Role-based permissions │ │ │ │ - Project scope enforcement │ │ │ │ - Sensitive action approval │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ │ Layer 2: Input Sanitization │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ - Prompt injection detection │ │ │ │ - Content filtering │ │ │ │ - Schema validation │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ │ Layer 1: Infrastructure Isolation │ │ ┌─────────────────────────────────────────────────────────┐ │ │ │ - Container sandboxing │ │ │ │ - Network segmentation │ │ │ │ - File system restrictions │ │ │ └─────────────────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────────────────┘ ``` ### Recommendation Implement **defense-in-depth** with multiple security layers. Assume agents can be compromised and design for containment. --- ## Summary of Recommendations | Area | Recommendation | Priority | |------|----------------|----------| | Memory | Tiered memory with context compression | High | | Knowledge | Privacy-aware extraction with human gate | Medium | | Specialization | Layered capabilities with role-specific top | Medium | | Collaboration | Real-time dashboard with intervention | High | | Testing | Multi-layer with prompt evals | High | | Recovery | Action logging with rollback engine | High | | Security | Defense-in-depth, assume compromise | High | --- ## Next Steps 1. **Validate with spike research** - Update based on spike findings 2. **Create detailed ADRs** - For memory, recovery, security 3. **Prototype critical paths** - Memory system, rollback engine 4. **Security review** - External audit before production --- *This document captures architectural thinking to guide implementation. It should be updated as spikes complete and design evolves.*