Files
syndarix/backend/app/services/memory/integration/context_source.py
Felipe Cardoso 30e5c68304 feat(memory): integrate memory system with context engine (#97)
## Changes

### New Context Type
- Add MEMORY to ContextType enum for agent memory context
- Create MemoryContext class with subtypes (working, episodic, semantic, procedural)
- Factory methods: from_working_memory, from_episodic_memory, from_semantic_memory, from_procedural_memory

### Memory Context Source
- MemoryContextSource service fetches relevant memories for context assembly
- Configurable fetch limits per memory type
- Parallel fetching from all memory types

### Agent Lifecycle Hooks
- AgentLifecycleManager handles spawn, pause, resume, terminate events
- spawn: Initialize working memory with optional initial state
- pause: Create checkpoint of working memory
- resume: Restore from checkpoint
- terminate: Consolidate working memory to episodic memory
- LifecycleHooks for custom extension points

### Context Engine Integration
- Add memory_query parameter to assemble_context()
- Add session_id and agent_type_id for memory scoping
- Memory budget allocation (15% by default)
- set_memory_source() for runtime configuration

### Tests
- 48 new tests for MemoryContext, MemoryContextSource, and lifecycle hooks
- All 108 memory-related tests passing
- mypy and ruff checks passing

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-05 03:49:22 +01:00

403 lines
13 KiB
Python

# app/services/memory/integration/context_source.py
"""
Memory Context Source.
Provides agent memory as a context source for the Context Engine.
Retrieves relevant memories based on query and converts them to MemoryContext objects.
"""
import logging
from dataclasses import dataclass
from datetime import UTC, datetime, timedelta
from typing import Any
from uuid import UUID
from sqlalchemy.ext.asyncio import AsyncSession
from app.services.context.types.memory import MemoryContext
from app.services.memory.episodic import EpisodicMemory
from app.services.memory.procedural import ProceduralMemory
from app.services.memory.semantic import SemanticMemory
from app.services.memory.working import WorkingMemory
logger = logging.getLogger(__name__)
@dataclass
class MemoryFetchConfig:
"""Configuration for memory fetching."""
# Limits per memory type
working_limit: int = 10
episodic_limit: int = 10
semantic_limit: int = 15
procedural_limit: int = 5
# Time ranges
episodic_days_back: int = 30
min_relevance: float = 0.3
# Which memory types to include
include_working: bool = True
include_episodic: bool = True
include_semantic: bool = True
include_procedural: bool = True
@dataclass
class MemoryFetchResult:
"""Result of memory fetch operation."""
contexts: list[MemoryContext]
by_type: dict[str, int]
fetch_time_ms: float
query: str
class MemoryContextSource:
"""
Source for memory context in the Context Engine.
This service retrieves relevant memories based on a query and
converts them to MemoryContext objects for context assembly.
It coordinates between all memory types (working, episodic,
semantic, procedural) to provide a comprehensive memory context.
"""
def __init__(
self,
session: AsyncSession,
embedding_generator: Any | None = None,
) -> None:
"""
Initialize the memory context source.
Args:
session: Database session
embedding_generator: Optional embedding generator for semantic search
"""
self._session = session
self._embedding_generator = embedding_generator
# Lazy-initialized memory services
self._episodic: EpisodicMemory | None = None
self._semantic: SemanticMemory | None = None
self._procedural: ProceduralMemory | None = None
async def _get_episodic(self) -> EpisodicMemory:
"""Get or create episodic memory service."""
if self._episodic is None:
self._episodic = await EpisodicMemory.create(
self._session,
self._embedding_generator,
)
return self._episodic
async def _get_semantic(self) -> SemanticMemory:
"""Get or create semantic memory service."""
if self._semantic is None:
self._semantic = await SemanticMemory.create(
self._session,
self._embedding_generator,
)
return self._semantic
async def _get_procedural(self) -> ProceduralMemory:
"""Get or create procedural memory service."""
if self._procedural is None:
self._procedural = await ProceduralMemory.create(
self._session,
self._embedding_generator,
)
return self._procedural
async def fetch_context(
self,
query: str,
project_id: UUID,
agent_instance_id: UUID | None = None,
agent_type_id: UUID | None = None,
session_id: str | None = None,
config: MemoryFetchConfig | None = None,
) -> MemoryFetchResult:
"""
Fetch relevant memories as context.
This is the main entry point for the Context Engine integration.
It searches across all memory types and returns relevant memories
as MemoryContext objects.
Args:
query: Search query for finding relevant memories
project_id: Project scope
agent_instance_id: Optional agent instance scope
agent_type_id: Optional agent type scope (for procedural)
session_id: Optional session ID (for working memory)
config: Optional fetch configuration
Returns:
MemoryFetchResult with contexts and metadata
"""
config = config or MemoryFetchConfig()
start_time = datetime.now(UTC)
contexts: list[MemoryContext] = []
by_type: dict[str, int] = {
"working": 0,
"episodic": 0,
"semantic": 0,
"procedural": 0,
}
# Fetch from working memory (session-scoped)
if config.include_working and session_id:
try:
working_contexts = await self._fetch_working(
query=query,
session_id=session_id,
project_id=project_id,
agent_instance_id=agent_instance_id,
limit=config.working_limit,
)
contexts.extend(working_contexts)
by_type["working"] = len(working_contexts)
except Exception as e:
logger.warning(f"Failed to fetch working memory: {e}")
# Fetch from episodic memory
if config.include_episodic:
try:
episodic_contexts = await self._fetch_episodic(
query=query,
project_id=project_id,
agent_instance_id=agent_instance_id,
limit=config.episodic_limit,
days_back=config.episodic_days_back,
)
contexts.extend(episodic_contexts)
by_type["episodic"] = len(episodic_contexts)
except Exception as e:
logger.warning(f"Failed to fetch episodic memory: {e}")
# Fetch from semantic memory
if config.include_semantic:
try:
semantic_contexts = await self._fetch_semantic(
query=query,
project_id=project_id,
limit=config.semantic_limit,
min_relevance=config.min_relevance,
)
contexts.extend(semantic_contexts)
by_type["semantic"] = len(semantic_contexts)
except Exception as e:
logger.warning(f"Failed to fetch semantic memory: {e}")
# Fetch from procedural memory
if config.include_procedural:
try:
procedural_contexts = await self._fetch_procedural(
query=query,
project_id=project_id,
agent_type_id=agent_type_id,
limit=config.procedural_limit,
)
contexts.extend(procedural_contexts)
by_type["procedural"] = len(procedural_contexts)
except Exception as e:
logger.warning(f"Failed to fetch procedural memory: {e}")
# Sort by relevance
contexts.sort(key=lambda c: c.relevance_score, reverse=True)
fetch_time = (datetime.now(UTC) - start_time).total_seconds() * 1000
logger.debug(
f"Fetched {len(contexts)} memory contexts for query '{query[:50]}...' "
f"in {fetch_time:.1f}ms"
)
return MemoryFetchResult(
contexts=contexts,
by_type=by_type,
fetch_time_ms=fetch_time,
query=query,
)
async def _fetch_working(
self,
query: str,
session_id: str,
project_id: UUID,
agent_instance_id: UUID | None,
limit: int,
) -> list[MemoryContext]:
"""Fetch from working memory."""
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id) if agent_instance_id else None,
)
contexts: list[MemoryContext] = []
all_keys = await working.list_keys()
# Filter keys by query (simple substring match)
query_lower = query.lower()
matched_keys = [k for k in all_keys if query_lower in k.lower()]
# If no query match, include all keys (working memory is always relevant)
if not matched_keys and query:
matched_keys = all_keys
for key in matched_keys[:limit]:
value = await working.get(key)
if value is not None:
contexts.append(
MemoryContext.from_working_memory(
key=key,
value=value,
source=f"working:{session_id}",
query=query,
)
)
return contexts
async def _fetch_episodic(
self,
query: str,
project_id: UUID,
agent_instance_id: UUID | None,
limit: int,
days_back: int,
) -> list[MemoryContext]:
"""Fetch from episodic memory."""
episodic = await self._get_episodic()
# Search for similar episodes
episodes = await episodic.search_similar(
project_id=project_id,
query=query,
limit=limit,
agent_instance_id=agent_instance_id,
)
# Also get recent episodes if we didn't find enough
if len(episodes) < limit // 2:
since = datetime.now(UTC) - timedelta(days=days_back)
recent = await episodic.get_recent(
project_id=project_id,
limit=limit,
since=since,
)
# Deduplicate by ID
existing_ids = {e.id for e in episodes}
for ep in recent:
if ep.id not in existing_ids:
episodes.append(ep)
if len(episodes) >= limit:
break
return [
MemoryContext.from_episodic_memory(ep, query=query)
for ep in episodes[:limit]
]
async def _fetch_semantic(
self,
query: str,
project_id: UUID,
limit: int,
min_relevance: float,
) -> list[MemoryContext]:
"""Fetch from semantic memory."""
semantic = await self._get_semantic()
facts = await semantic.search_facts(
query=query,
project_id=project_id,
limit=limit,
min_confidence=min_relevance,
)
return [
MemoryContext.from_semantic_memory(fact, query=query)
for fact in facts
]
async def _fetch_procedural(
self,
query: str,
project_id: UUID,
agent_type_id: UUID | None,
limit: int,
) -> list[MemoryContext]:
"""Fetch from procedural memory."""
procedural = await self._get_procedural()
procedures = await procedural.find_matching(
context=query,
project_id=project_id,
agent_type_id=agent_type_id,
limit=limit,
)
return [
MemoryContext.from_procedural_memory(proc, query=query)
for proc in procedures
]
async def fetch_all_working(
self,
session_id: str,
project_id: UUID,
agent_instance_id: UUID | None = None,
) -> list[MemoryContext]:
"""
Fetch all working memory for a session.
Useful for including entire session state in context.
Args:
session_id: Session ID
project_id: Project scope
agent_instance_id: Optional agent instance scope
Returns:
List of MemoryContext for all working memory items
"""
working = await WorkingMemory.for_session(
session_id=session_id,
project_id=str(project_id),
agent_instance_id=str(agent_instance_id) if agent_instance_id else None,
)
contexts: list[MemoryContext] = []
all_keys = await working.list_keys()
for key in all_keys:
value = await working.get(key)
if value is not None:
contexts.append(
MemoryContext.from_working_memory(
key=key,
value=value,
source=f"working:{session_id}",
)
)
return contexts
# Factory function
async def get_memory_context_source(
session: AsyncSession,
embedding_generator: Any | None = None,
) -> MemoryContextSource:
"""Create a memory context source instance."""
return MemoryContextSource(
session=session,
embedding_generator=embedding_generator,
)