Files
syndarix/backend/app/models/memory/fact.py
Felipe Cardoso c9d8c0835c feat(memory): add database schema and storage layer (Issue #88)
Add SQLAlchemy models for the Agent Memory System:
- WorkingMemory: Key-value storage with TTL for active sessions
- Episode: Experiential memories from task executions
- Fact: Semantic knowledge triples with confidence scores
- Procedure: Learned skills and procedures with success tracking
- MemoryConsolidationLog: Tracks consolidation jobs between memory tiers

Create enums for memory system:
- ScopeType: global, project, agent_type, agent_instance, session
- EpisodeOutcome: success, failure, partial
- ConsolidationType: working_to_episodic, episodic_to_semantic, etc.
- ConsolidationStatus: pending, running, completed, failed

Add Alembic migration (0005) for all memory tables with:
- Foreign key relationships to projects, agent_instances, agent_types
- Comprehensive indexes for query patterns
- Unique constraints for key lookups and triple uniqueness
- Vector embedding column placeholders (Text fallback until pgvector enabled)

Fix timezone-naive datetime.now() in types.py TaskState (review feedback)

Includes 30 unit tests for models and enums.

Closes #88

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-05 01:37:58 +01:00

104 lines
3.0 KiB
Python

# app/models/memory/fact.py
"""
Fact database model.
Stores semantic memories - learned facts in subject-predicate-object
triple format with confidence scores and source tracking.
"""
from sqlalchemy import (
Column,
DateTime,
Float,
ForeignKey,
Index,
Integer,
String,
Text,
)
from sqlalchemy.dialects.postgresql import (
ARRAY,
UUID as PGUUID,
)
from sqlalchemy.orm import relationship
from app.models.base import Base, TimestampMixin, UUIDMixin
# Import pgvector type
try:
from pgvector.sqlalchemy import Vector # type: ignore[import-not-found]
except ImportError:
Vector = None
class Fact(Base, UUIDMixin, TimestampMixin):
"""
Semantic memory model.
Stores learned facts as subject-predicate-object triples:
- "FastAPI" - "uses" - "Starlette framework"
- "Project Alpha" - "requires" - "OAuth authentication"
Facts have confidence scores that decay over time and can be
reinforced when the same fact is learned again.
"""
__tablename__ = "facts"
# Scoping: project_id is NULL for global facts
project_id = Column(
PGUUID(as_uuid=True),
ForeignKey("projects.id", ondelete="CASCADE"),
nullable=True,
index=True,
)
# Triple format
subject = Column(String(500), nullable=False, index=True)
predicate = Column(String(255), nullable=False, index=True)
object = Column(Text, nullable=False)
# Confidence score (0.0 to 1.0)
confidence = Column(Float, nullable=False, default=0.8, index=True)
# Source tracking: which episodes contributed to this fact
source_episode_ids: Column[list] = Column(
ARRAY(PGUUID(as_uuid=True)), default=list, nullable=False
)
# Learning history
first_learned = Column(DateTime(timezone=True), nullable=False)
last_reinforced = Column(DateTime(timezone=True), nullable=False)
reinforcement_count = Column(Integer, nullable=False, default=1)
# Vector embedding for semantic search
embedding = Column(Vector(1536) if Vector else Text, nullable=True)
# Relationships
project = relationship("Project", foreign_keys=[project_id])
__table_args__ = (
# Unique constraint on triple within project scope
Index(
"ix_facts_unique_triple",
"project_id",
"subject",
"predicate",
"object",
unique=True,
postgresql_where="project_id IS NOT NULL",
),
# Query patterns
Index("ix_facts_subject_predicate", "subject", "predicate"),
Index("ix_facts_project_subject", "project_id", "subject"),
Index("ix_facts_confidence_time", "confidence", "last_reinforced"),
# For finding facts by entity (subject or object)
Index("ix_facts_subject", "subject"),
)
def __repr__(self) -> str:
return (
f"<Fact {self.id} '{self.subject}' - '{self.predicate}' - "
f"'{self.object[:50]}...' conf={self.confidence:.2f}>"
)