Add SQLAlchemy models for the Agent Memory System: - WorkingMemory: Key-value storage with TTL for active sessions - Episode: Experiential memories from task executions - Fact: Semantic knowledge triples with confidence scores - Procedure: Learned skills and procedures with success tracking - MemoryConsolidationLog: Tracks consolidation jobs between memory tiers Create enums for memory system: - ScopeType: global, project, agent_type, agent_instance, session - EpisodeOutcome: success, failure, partial - ConsolidationType: working_to_episodic, episodic_to_semantic, etc. - ConsolidationStatus: pending, running, completed, failed Add Alembic migration (0005) for all memory tables with: - Foreign key relationships to projects, agent_instances, agent_types - Comprehensive indexes for query patterns - Unique constraints for key lookups and triple uniqueness - Vector embedding column placeholders (Text fallback until pgvector enabled) Fix timezone-naive datetime.now() in types.py TaskState (review feedback) Includes 30 unit tests for models and enums. Closes #88 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
116 lines
3.1 KiB
Python
116 lines
3.1 KiB
Python
# app/models/memory/procedure.py
|
|
"""
|
|
Procedure database model.
|
|
|
|
Stores procedural memories - learned skills and procedures
|
|
derived from successful task execution patterns.
|
|
"""
|
|
|
|
from sqlalchemy import (
|
|
Column,
|
|
DateTime,
|
|
ForeignKey,
|
|
Index,
|
|
Integer,
|
|
String,
|
|
Text,
|
|
)
|
|
from sqlalchemy.dialects.postgresql import (
|
|
JSONB,
|
|
UUID as PGUUID,
|
|
)
|
|
from sqlalchemy.orm import relationship
|
|
|
|
from app.models.base import Base, TimestampMixin, UUIDMixin
|
|
|
|
# Import pgvector type
|
|
try:
|
|
from pgvector.sqlalchemy import Vector # type: ignore[import-not-found]
|
|
except ImportError:
|
|
Vector = None
|
|
|
|
|
|
class Procedure(Base, UUIDMixin, TimestampMixin):
|
|
"""
|
|
Procedural memory model.
|
|
|
|
Stores learned procedures (skills) extracted from successful
|
|
task execution patterns:
|
|
- Name and trigger pattern for matching
|
|
- Step-by-step actions
|
|
- Success/failure tracking
|
|
"""
|
|
|
|
__tablename__ = "procedures"
|
|
|
|
# Scoping
|
|
project_id = Column(
|
|
PGUUID(as_uuid=True),
|
|
ForeignKey("projects.id", ondelete="CASCADE"),
|
|
nullable=True,
|
|
index=True,
|
|
)
|
|
|
|
agent_type_id = Column(
|
|
PGUUID(as_uuid=True),
|
|
ForeignKey("agent_types.id", ondelete="SET NULL"),
|
|
nullable=True,
|
|
index=True,
|
|
)
|
|
|
|
# Procedure identification
|
|
name = Column(String(255), nullable=False, index=True)
|
|
trigger_pattern = Column(Text, nullable=False)
|
|
|
|
# Steps as JSON array of step objects
|
|
# Each step: {order, action, parameters, expected_outcome, fallback_action}
|
|
steps = Column(JSONB, default=list, nullable=False)
|
|
|
|
# Success tracking
|
|
success_count = Column(Integer, nullable=False, default=0)
|
|
failure_count = Column(Integer, nullable=False, default=0)
|
|
|
|
# Usage tracking
|
|
last_used = Column(DateTime(timezone=True), nullable=True, index=True)
|
|
|
|
# Vector embedding for semantic matching
|
|
embedding = Column(Vector(1536) if Vector else Text, nullable=True)
|
|
|
|
# Relationships
|
|
project = relationship("Project", foreign_keys=[project_id])
|
|
agent_type = relationship("AgentType", foreign_keys=[agent_type_id])
|
|
|
|
__table_args__ = (
|
|
# Unique procedure name within scope
|
|
Index(
|
|
"ix_procedures_unique_name",
|
|
"project_id",
|
|
"agent_type_id",
|
|
"name",
|
|
unique=True,
|
|
),
|
|
# Query patterns
|
|
Index("ix_procedures_project_name", "project_id", "name"),
|
|
Index("ix_procedures_agent_type", "agent_type_id"),
|
|
# For finding best procedures
|
|
Index("ix_procedures_success_rate", "success_count", "failure_count"),
|
|
)
|
|
|
|
@property
|
|
def success_rate(self) -> float:
|
|
"""Calculate the success rate of this procedure."""
|
|
total = self.success_count + self.failure_count
|
|
if total == 0:
|
|
return 0.0
|
|
return self.success_count / total
|
|
|
|
@property
|
|
def total_uses(self) -> int:
|
|
"""Get total number of times this procedure was used."""
|
|
return self.success_count + self.failure_count
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"<Procedure {self.name} ({self.id}) success_rate={self.success_rate:.2%}>"
|
|
)
|