Files
fast-next-template/docs/adrs/ADR-004-llm-provider-abstraction.md
Felipe Cardoso 6e3cdebbfb docs: add architecture decision records (ADRs) for key technical choices
- Added the following ADRs to `docs/adrs/` directory:
  - ADR-001: MCP Integration Architecture
  - ADR-002: Real-time Communication Architecture
  - ADR-003: Background Task Architecture
  - ADR-004: LLM Provider Abstraction
  - ADR-005: Technology Stack Selection
- Each ADR details the context, decision drivers, considered options, final decisions, and implementation plans.
- Documentation aligns technical choices with architecture principles and system requirements for Syndarix.
2025-12-29 13:16:02 +01:00

190 lines
4.9 KiB
Markdown

# ADR-004: LLM Provider Abstraction
**Status:** Accepted
**Date:** 2025-12-29
**Deciders:** Architecture Team
**Related Spikes:** SPIKE-005
---
## Context
Syndarix agents require access to large language models (LLMs) from multiple providers:
- **Anthropic** (Claude) - Primary provider
- **OpenAI** (GPT-4) - Fallback provider
- **Local models** (Ollama/Llama) - Cost optimization, privacy
We need a unified abstraction layer that provides:
- Consistent API across providers
- Automatic failover on errors
- Usage tracking and cost management
- Rate limiting compliance
## Decision Drivers
- **Reliability:** Automatic failover on provider outages
- **Cost Control:** Track and limit API spending
- **Flexibility:** Easy to add/swap providers
- **Consistency:** Single interface for all agents
- **Async Support:** Compatible with async FastAPI
## Considered Options
### Option 1: Direct Provider SDKs
Use Anthropic and OpenAI SDKs directly with custom abstraction.
**Pros:**
- Full control over implementation
- No external dependencies
**Cons:**
- Significant development effort
- Must maintain failover logic
- Must track token costs manually
### Option 2: LiteLLM (Selected)
Use LiteLLM as unified abstraction layer.
**Pros:**
- Unified API for 100+ providers
- Built-in failover and routing
- Automatic token counting
- Cost tracking built-in
- Redis caching support
- Active community
**Cons:**
- External dependency
- May lag behind provider SDK updates
### Option 3: LangChain
Use LangChain's LLM abstraction.
**Pros:**
- Large ecosystem
- Many integrations
**Cons:**
- Heavy dependency
- Overkill for just LLM abstraction
- Complexity overhead
## Decision
**Adopt Option 2: LiteLLM for unified LLM provider abstraction.**
LiteLLM provides the reliability, monitoring, and multi-provider support needed with minimal overhead.
## Implementation
### Model Groups
| Group Name | Use Case | Primary Model | Fallback |
|------------|----------|---------------|----------|
| `high-reasoning` | Complex analysis, architecture | Claude 3.5 Sonnet | GPT-4 Turbo |
| `fast-response` | Quick tasks, simple queries | Claude 3 Haiku | GPT-4o Mini |
| `cost-optimized` | High-volume, non-critical | Local Llama 3 | Claude 3 Haiku |
### Failover Chain
```
Claude 3.5 Sonnet (Anthropic)
▼ (on failure)
GPT-4 Turbo (OpenAI)
▼ (on failure)
Llama 3 (Ollama/Local)
▼ (on failure)
Error with retry
```
### LLM Gateway Service
```python
class LLMGateway:
def __init__(self):
self.router = Router(
model_list=model_list,
fallbacks=[
{"high-reasoning": ["high-reasoning", "local-fallback"]},
],
routing_strategy="latency-based-routing",
num_retries=3,
)
async def complete(
self,
agent_id: str,
project_id: str,
messages: list[dict],
model_preference: str = "high-reasoning",
) -> dict:
response = await self.router.acompletion(
model=model_preference,
messages=messages,
)
await self._track_usage(agent_id, project_id, response)
return response
```
### Cost Tracking
| Model | Input (per 1M tokens) | Output (per 1M tokens) |
|-------|----------------------|------------------------|
| Claude 3.5 Sonnet | $3.00 | $15.00 |
| Claude 3 Haiku | $0.25 | $1.25 |
| GPT-4 Turbo | $10.00 | $30.00 |
| GPT-4o Mini | $0.15 | $0.60 |
| Ollama (local) | $0.00 | $0.00 |
### Agent Type Mapping
| Agent Type | Model Preference | Rationale |
|------------|------------------|-----------|
| Product Owner | high-reasoning | Complex requirements analysis |
| Software Architect | high-reasoning | Architecture decisions |
| Software Engineer | high-reasoning | Code generation |
| QA Engineer | fast-response | Test case generation |
| DevOps Engineer | fast-response | Config generation |
| Project Manager | fast-response | Status updates |
### Caching Strategy
- **Redis-backed cache** for repeated queries
- **TTL:** 1 hour for general queries
- **Skip cache:** For context-dependent generation
- **Cache key:** Hash of (model, messages, temperature)
## Consequences
### Positive
- Single interface for all LLM operations
- Automatic failover improves reliability
- Built-in cost tracking and budgeting
- Easy to add new providers
- Caching reduces API costs
### Negative
- Dependency on LiteLLM library
- May lag behind provider SDK features
- Additional abstraction layer
### Mitigation
- Pin LiteLLM version, test before upgrades
- Direct SDK access available if needed
- Monitor LiteLLM updates for breaking changes
## Compliance
This decision aligns with:
- FR-101: Agent type model configuration
- NFR-103: Agent response time targets
- NFR-402: Failover requirements
- TR-001: LLM API unavailability mitigation
---
*This ADR supersedes any previous decisions regarding LLM integration.*