fix: Resolve ADR-007 vs ADR-010 Temporal contradiction

Remove Temporal from the architecture in favor of the simpler
transitions + PostgreSQL + Celery approach. This aligns ADR-007
with ADR-010 based on user preference for simpler operations.

Key changes:
- ADR-007 now recommends transitions library instead of Temporal
- Added explicit "Why Not Temporal?" section explaining the trade-off
- Added "Reboot Survival" section documenting durability guarantees
- Updated architecture diagrams and component responsibilities
- Updated ARCHITECTURE.md summary matrix

The simpler approach is more appropriate for Syndarix's scale (10-50
concurrent agents) and uses existing PostgreSQL + Celery infrastructure.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2025-12-29 14:04:37 +01:00
parent 406b25cda0
commit de47d9ee43
2 changed files with 134 additions and 42 deletions

View File

@@ -99,11 +99,29 @@ We evaluated whether to adopt an existing framework wholesale or build a custom
**Adopt a hybrid architecture using LangGraph as the core agent framework**, complemented by:
1. **LangGraph** - Agent state machines and logic
2. **Temporal** - Durable workflow execution
2. **transitions + PostgreSQL + Celery** - Durable workflow state machines
3. **Redis Streams** - Agent-to-agent communication
4. **LiteLLM** - Unified LLM access with failover
5. **PostgreSQL + pgvector** - State persistence and RAG
### Why Not Temporal?
After evaluating both approaches, we chose the simpler **transitions + PostgreSQL + Celery** stack over Temporal:
| Factor | Temporal | transitions + PostgreSQL |
|--------|----------|-------------------------|
| Complexity | High (separate cluster, workers, SDK) | Low (Python library + existing infra) |
| Learning Curve | Steep (new paradigm) | Gentle (familiar patterns) |
| Infrastructure | Dedicated cluster required | Uses existing PostgreSQL + Celery |
| Scale Target | Enterprise (1000s of workflows) | Syndarix (10s of agents) |
| Debugging | Temporal UI (powerful but complex) | Standard DB queries + logs |
**Temporal is overkill for our scale** (10-50 concurrent agents). The simpler approach provides:
- Full durability via PostgreSQL state persistence
- Event sourcing via transition history table
- Background execution via Celery workers
- Simpler debugging with standard tools
### Architecture Overview
```
@@ -112,12 +130,12 @@ We evaluated whether to adopt an existing framework wholesale or build a custom
├─────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌───────────────────────────────────────────────────────────────────┐ │
│ │ Temporal Workflow Engine │ │
│ │ Workflow Engine (transitions + PostgreSQL) │ │
│ │ │ │
│ │ • Durable execution (survives crashes, restarts, deployments) │ │
│ │ • Human approval checkpoints (wait indefinitely for client) │ │
│ │ • Long-running workflows (projects spanning weeks/months) │ │
│ │ • Built-in retry policies and timeouts │ │
│ │ • State persistence to PostgreSQL (survives restarts) │ │
│ │ • Event sourcing via workflow_transitions table │ │
│ │ • Human approval checkpoints (pause workflow, await signal) │ │
│ │ • Background execution via Celery workers │ │
│ │ │ │
│ │ License: MIT | Self-Hosted: Yes | Subscription: None Required │ │
│ └───────────────────────────────────────────────────────────────────┘ │
@@ -173,10 +191,35 @@ We evaluated whether to adopt an existing framework wholesale or build a custom
| Component | Responsibility | Why This Choice |
|-----------|---------------|-----------------|
| **LangGraph** | Agent state machines, tool execution, reasoning loops | Production-proven, fine-grained control, PostgreSQL checkpointing |
| **Temporal** | Durable workflows, human approvals, long-running orchestration | Only solution for week-long workflows that survive failures |
| **transitions** | Workflow state machines (sprint, story, PR) | Lightweight, Pythonic, no external dependencies |
| **Celery + Redis** | Background task execution, async workflows | Already in stack, battle-tested |
| **PostgreSQL** | Workflow state persistence, event sourcing | ACID guarantees, survives restarts |
| **Redis Streams** | Agent messaging, real-time events, pub/sub | Low-latency, persistent streams, consumer groups |
| **LiteLLM** | LLM abstraction, failover, cost tracking | Unified API, automatic failover, no vendor lock-in |
| **PostgreSQL** | State persistence, audit logs, agent data | Already in stack, pgvector for RAG |
### Reboot Survival (Durability)
The architecture **fully supports system reboots and crashes**:
1. **Workflow State**: Persisted to PostgreSQL `workflow_instances` table
2. **Transition History**: Event-sourced in `workflow_transitions` table
3. **Agent Checkpoints**: LangGraph persists to PostgreSQL
4. **Pending Tasks**: Celery tasks in Redis (configured with persistence)
**Recovery Process:**
```
System Restart
Load workflow_instances WHERE status = 'in_progress'
For each workflow:
├── Restore state from context JSONB
├── Identify current_state
├── Resume from last checkpoint
└── Continue execution
```
### Self-Hostability Guarantee
@@ -185,7 +228,8 @@ All components are fully self-hostable with permissive open-source licenses:
| Component | License | Paid Cloud Alternative | Required for Syndarix? |
|-----------|---------|----------------------|----------------------|
| LangGraph | MIT | LangSmith (observability) | No - use LangFuse or custom |
| Temporal | MIT | Temporal Cloud | No - self-host server |
| transitions | MIT | N/A | N/A - simple library |
| Celery | BSD-3 | Various | No - self-host |
| LiteLLM | MIT | LiteLLM Enterprise | No - self-host proxy |
| Redis | BSD-3 | Redis Cloud | No - self-host |
| PostgreSQL | PostgreSQL | Various managed DBs | No - self-host |
@@ -198,7 +242,8 @@ All components are fully self-hostable with permissive open-source licenses:
|---------|----------|-----------|
| Agent Logic | **USE LangGraph** | Don't reinvent state machines |
| LLM Access | **USE LiteLLM** | Don't reinvent provider abstraction |
| Durability | **USE Temporal** | Don't reinvent durable execution |
| Workflow State | **USE transitions + PostgreSQL** | Simple, durable, debuggable |
| Background Tasks | **USE Celery** | Already in stack, proven |
| Messaging | **USE Redis Streams** | Don't reinvent pub/sub |
| Orchestration | **BUILD thin layer** | Syndarix-specific (autonomy levels, team structure) |
| Agent Spawning | **BUILD thin layer** | Type-Instance pattern specific to Syndarix |
@@ -209,28 +254,38 @@ All components are fully self-hostable with permissive open-source licenses:
```python
# Example: How the layers integrate
# 1. Temporal orchestrates the high-level workflow
@workflow.defn
class SprintWorkflow:
@workflow.run
async def run(self, sprint: SprintConfig) -> SprintResult:
# Spawns agents and waits for completion
agents = await workflow.execute_activity(spawn_agent_team, sprint)
# 1. Workflow state machine (transitions library)
class SprintWorkflow(Machine):
states = ['planning', 'active', 'review', 'done']
# Each agent runs a LangGraph state machine
results = await workflow.execute_activity(
run_agent_tasks,
agents,
start_to_close_timeout=timedelta(days=7),
def __init__(self, sprint_id: str):
self.sprint_id = sprint_id
Machine.__init__(
self,
states=self.states,
initial='planning',
after_state_change='persist_state'
)
self.add_transition('start', 'planning', 'active', before='spawn_agents')
self.add_transition('complete_work', 'active', 'review')
self.add_transition('approve', 'review', 'done', conditions='has_approval')
# Human checkpoint (waits indefinitely)
if sprint.autonomy_level != AutonomyLevel.AUTONOMOUS:
await workflow.wait_condition(lambda: self._approved)
async def persist_state(self):
"""Save state to PostgreSQL (survives restarts)"""
await db.execute("""
UPDATE workflow_instances
SET current_state = $1, context = $2, updated_at = NOW()
WHERE id = $3
""", self.state, self.context, self.sprint_id)
return results
# 2. Background execution via Celery
@celery_app.task(bind=True, max_retries=3)
def run_sprint_workflow(self, sprint_id: str):
workflow = SprintWorkflow.load(sprint_id) # Restore from DB
workflow.start() # Triggers agent spawning
# Workflow persists state, can resume after restart
# 2. LangGraph handles individual agent logic
# 3. LangGraph handles individual agent logic
def create_agent_graph() -> StateGraph:
graph = StateGraph(AgentState)
graph.add_node("think", think_node) # LLM reasoning
@@ -239,7 +294,7 @@ def create_agent_graph() -> StateGraph:
# ... state transitions
return graph.compile(checkpointer=PostgresSaver(...))
# 3. LiteLLM handles LLM calls with failover
# 4. LiteLLM handles LLM calls with failover
async def think_node(state: AgentState) -> AgentState:
response = await litellm.acompletion(
model="claude-sonnet-4-20250514",
@@ -249,7 +304,7 @@ async def think_node(state: AgentState) -> AgentState:
)
return {"messages": [response.choices[0].message]}
# 4. Redis Streams handles agent communication
# 5. Redis Streams handles agent communication
async def handoff_node(state: AgentState) -> AgentState:
await message_bus.publish(AgentMessage(
source_agent_id=state["agent_id"],
@@ -260,27 +315,60 @@ async def handoff_node(state: AgentState) -> AgentState:
return state
```
### Human Approval Checkpoints
For workflows requiring human approval (FULL_CONTROL and MILESTONE modes):
```python
class StoryWorkflow(Machine):
async def request_approval_and_wait(self, action: str):
"""Pause workflow and await human decision."""
# 1. Create approval request
request = await approval_service.create(
workflow_id=self.id,
action=action,
context=self.context
)
# 2. Transition to waiting state (persisted)
self.state = 'awaiting_approval'
await self.persist_state()
# 3. Workflow is paused - Celery task completes
# When user approves, a new task resumes the workflow
@classmethod
async def resume_on_approval(cls, workflow_id: str, approved: bool):
"""Called when user makes a decision."""
workflow = await cls.load(workflow_id)
if approved:
workflow.trigger('approved')
else:
workflow.trigger('rejected')
```
## Consequences
### Positive
- **Production-tested foundations** - LangGraph, Temporal, LiteLLM are battle-tested
- **Production-tested foundations** - LangGraph, Celery, LiteLLM are battle-tested
- **No subscription lock-in** - All components self-hostable under permissive licenses
- **Right tool for each job** - Specialized components for durability, state, communication
- **Right tool for each job** - Specialized components for state, communication, background processing
- **Escape hatches** - Can replace any component without full rewrite
- **Enterprise patterns** - Temporal used by Netflix, Uber, Stripe for similar problems
- **Simpler operations** - Uses existing PostgreSQL + Redis infrastructure, no new services
- **Reboot survival** - Full durability via PostgreSQL persistence
### Negative
- **Multiple technologies to learn** - Team needs LangGraph, Temporal, Redis Streams knowledge
- **Operational complexity** - More services to deploy and monitor
- **Multiple technologies to learn** - Team needs LangGraph, transitions, Redis Streams knowledge
- **Integration work** - Thin glue layers needed between components
- **Manual recovery logic** - Must implement workflow recovery on startup
### Mitigation
- **Learning curve** - Start with simple 2-3 agent workflows, expand gradually
- **Operational complexity** - Use Docker Compose locally, consider managed services for production if needed
- **Integration** - Create clear abstractions; each layer only knows its immediate neighbors
- **Recovery** - Implement startup recovery task that scans for in-progress workflows
## Compliance
@@ -297,23 +385,27 @@ This decision aligns with:
LangSmith is LangChain's paid observability platform. Instead, we will:
- Use **LangFuse** (open source, self-hostable) for LLM observability
- Use **Temporal UI** (built-in) for workflow visibility
- Use standard logging + PostgreSQL queries for workflow visibility
- Build custom dashboards for Syndarix-specific metrics
### Temporal Cloud
### Temporal for Durable Workflows
Temporal offers a managed cloud service. Instead, we will:
- Self-host Temporal server (single-node for start, cluster for scale)
- Use PostgreSQL as Temporal's persistence backend (already in stack)
Temporal was initially considered but rejected for this project:
- **Overkill for scale** - Syndarix targets 10-50 concurrent agents, not thousands
- **Operational overhead** - Requires separate cluster, workers, SDK learning curve
- **Simpler alternative available** - transitions + PostgreSQL provides equivalent durability
- **Migration path** - If scale demands grow, Temporal can be introduced later
## References
- [LangGraph Documentation](https://langchain-ai.github.io/langgraph/)
- [Temporal.io Documentation](https://docs.temporal.io/)
- [transitions Library](https://github.com/pytransitions/transitions)
- [LiteLLM Documentation](https://docs.litellm.ai/)
- [LangFuse (Open Source LLM Observability)](https://langfuse.com/)
- [SPIKE-002: Agent Orchestration Pattern](../spikes/SPIKE-002-agent-orchestration-pattern.md)
- [SPIKE-005: LLM Provider Abstraction](../spikes/SPIKE-005-llm-provider-abstraction.md)
- [SPIKE-008: Workflow State Machine](../spikes/SPIKE-008-workflow-state-machine.md)
- [ADR-010: Workflow State Machine](./ADR-010-workflow-state-machine.md)
---

View File

@@ -90,7 +90,7 @@ Syndarix is an autonomous AI-powered software consulting platform that orchestra
| ADR-004 | LLM Provider | LiteLLM with failover |
| ADR-005 | Tech Stack | PragmaStack + extensions |
| ADR-006 | Agent Orchestration | Type-Instance pattern |
| ADR-007 | Framework Selection | Hybrid (LangGraph + custom) |
| ADR-007 | Framework Selection | Hybrid (LangGraph + transitions + Celery) |
| ADR-008 | Knowledge Base | pgvector for RAG |
| ADR-009 | Agent Communication | Structured messages + Redis Streams |
| ADR-010 | Workflows | transitions + PostgreSQL + Celery |