Files
syndarix/docs/adrs/ADR-012-cost-tracking.md
Felipe Cardoso 88cf4e0abc feat: Update to production model stack and fix remaining inconsistencies
## Model Stack Updates (User's Actual Models)

Updated all documentation to reflect production models:
- Claude Opus 4.5 (primary reasoning)
- GPT 5.1 Codex max (code generation specialist)
- Gemini 3 Pro/Flash (multimodal, fast inference)
- Qwen3-235B (cost-effective, self-hostable)
- DeepSeek V3.2 (self-hosted, open weights)

### Files Updated:
- ADR-004: Full model groups, failover chains, cost tables
- ADR-007: Code example with correct model identifiers
- ADR-012: Cost tracking with new model prices
- ARCHITECTURE.md: Model groups, failover diagram
- IMPLEMENTATION_ROADMAP.md: External services list

## Architecture Diagram Updates

- Added LangGraph Runtime to orchestration layer
- Added technology labels (Type-Instance, transitions)

## Self-Hostability Table Expanded

Added entries for:
- LangGraph (MIT)
- transitions (MIT)
- DeepSeek V3.2 (MIT)
- Qwen3-235B (Apache 2.0)

## Metric Alignments

- Response time: Split into API (<200ms) and Agent (<10s/<60s)
- Cost per project: Adjusted to $100/sprint for Opus 4.5 pricing
- Added concurrent projects (10+) and agents (50+) metrics

## Infrastructure Updates

- Celery workers: 4-8 instances (was 2-4) across 4 queues
- MCP servers: Clarified Phase 2 + Phase 5 deployment
- Sync interval: Clarified 60s fallback + 15min reconciliation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-29 23:35:51 +01:00

205 lines
6.3 KiB
Markdown

# ADR-012: Cost Tracking and Budget Management
**Status:** Accepted
**Date:** 2025-12-29
**Deciders:** Architecture Team
**Related Spikes:** SPIKE-010
---
## Context
Syndarix agents make potentially expensive LLM API calls. Without proper cost tracking and budget enforcement, projects could incur unexpected charges. We need:
- Real-time cost visibility
- Per-project budget enforcement
- Cost optimization strategies
- Historical analytics
## Decision Drivers
- **Visibility:** Real-time cost tracking per agent/project
- **Control:** Budget enforcement with soft/hard limits
- **Optimization:** Identify and reduce unnecessary costs
- **Attribution:** Clear cost allocation for billing
## Decision
**Implement multi-layered cost tracking** using:
1. **LiteLLM Callbacks** for real-time usage capture
2. **Redis** for budget enforcement
3. **PostgreSQL** for persistent analytics
4. **SSE Events** for dashboard updates
## Implementation
### Cost Attribution Hierarchy
```
Organization (Billing Entity)
└── Project (Cost Center)
└── Sprint (Time-bounded Budget)
└── Agent Instance (Worker)
└── LLM Request (Atomic Cost Unit)
```
### LiteLLM Callback
```python
from litellm.integrations.custom_logger import CustomLogger
class SyndarixCostLogger(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
agent_id = kwargs.get("metadata", {}).get("agent_id")
project_id = kwargs.get("metadata", {}).get("project_id")
model = kwargs.get("model")
cost = kwargs.get("response_cost", 0)
usage = response_obj.usage
# Real-time budget check (Redis)
await self.budget_service.increment(
project_id=project_id,
cost=cost,
tokens=usage.total_tokens
)
# Persistent record (async queue to PostgreSQL)
await self.usage_queue.enqueue({
"agent_id": agent_id,
"project_id": project_id,
"model": model,
"prompt_tokens": usage.prompt_tokens,
"completion_tokens": usage.completion_tokens,
"cost_usd": cost,
"timestamp": datetime.utcnow()
})
# Check budget status
budget_status = await self.budget_service.check_status(project_id)
if budget_status == "exceeded":
await self.notify_budget_exceeded(project_id)
```
### Budget Enforcement
```python
class BudgetService:
async def check_budget(self, project_id: str) -> BudgetStatus:
"""Check current budget status."""
budget = await self.get_budget(project_id)
usage = await self.redis.get(f"cost:{project_id}:daily")
percentage = (usage / budget.daily_limit) * 100
if percentage >= 100 and budget.enforcement == "hard":
return BudgetStatus.BLOCKED
elif percentage >= 100:
return BudgetStatus.EXCEEDED
elif percentage >= 80:
return BudgetStatus.WARNING
elif percentage >= 50:
return BudgetStatus.APPROACHING
else:
return BudgetStatus.OK
async def enforce(self, project_id: str) -> bool:
"""Returns True if request should proceed."""
status = await self.check_budget(project_id)
if status == BudgetStatus.BLOCKED:
raise BudgetExceededException(project_id)
if status in [BudgetStatus.EXCEEDED, BudgetStatus.WARNING]:
# Auto-downgrade to cheaper model
await self.set_model_override(project_id, "cost-optimized")
return True
```
### Database Schema
```sql
CREATE TABLE token_usage (
id UUID PRIMARY KEY,
agent_id UUID,
project_id UUID NOT NULL,
model VARCHAR(100) NOT NULL,
prompt_tokens INTEGER NOT NULL,
completion_tokens INTEGER NOT NULL,
total_tokens INTEGER NOT NULL,
cost_usd DECIMAL(10, 6) NOT NULL,
timestamp TIMESTAMPTZ NOT NULL
);
CREATE TABLE project_budgets (
id UUID PRIMARY KEY,
project_id UUID NOT NULL UNIQUE,
daily_limit_usd DECIMAL(10, 2) DEFAULT 50.00,
weekly_limit_usd DECIMAL(10, 2) DEFAULT 250.00,
monthly_limit_usd DECIMAL(10, 2) DEFAULT 1000.00,
enforcement VARCHAR(20) DEFAULT 'soft', -- 'soft', 'hard'
alert_thresholds JSONB DEFAULT '[50, 80, 100]'
);
-- Materialized view for analytics
CREATE MATERIALIZED VIEW daily_cost_summary AS
SELECT
project_id,
DATE(timestamp) as date,
SUM(cost_usd) as total_cost,
SUM(total_tokens) as total_tokens,
COUNT(*) as request_count
FROM token_usage
GROUP BY project_id, DATE(timestamp);
```
### Cost Model Prices
| Model | Input ($/1M) | Output ($/1M) | Notes |
|-------|-------------|---------------|-------|
| Claude Opus 4.5 | $15.00 | $75.00 | Highest reasoning capability |
| GPT 5.1 Codex max | $12.00 | $60.00 | Code generation specialist |
| Gemini 3 Pro | $3.50 | $10.50 | Strong multimodal |
| Gemini 3 Flash | $0.35 | $1.05 | Fast inference |
| Qwen3-235B | $2.00 | $6.00 | Cost-effective (or $0 self-hosted) |
| DeepSeek V3.2 | $0.00 | $0.00 | Self-hosted, open weights |
### Cost Optimization Strategies
| Strategy | Savings | Implementation |
|----------|---------|----------------|
| Semantic caching | 15-30% | Redis cache for repeated queries |
| Model cascading | 60-80% | Start with Gemini Flash, escalate to Opus |
| Prompt compression | 10-20% | Remove redundant context |
| Self-hosted fallback | 100% for some | DeepSeek V3.2/Qwen3 for non-critical tasks |
| Task-appropriate routing | 40-60% | Route code tasks to GPT 5.1 Codex, simple to Flash |
## Consequences
### Positive
- Complete cost visibility at all levels
- Automatic budget enforcement
- Cost optimization reduces spend significantly
- Real-time dashboard updates
### Negative
- Redis dependency for real-time tracking
- Additional complexity in LLM gateway
### Mitigation
- Redis already required for other features
- Clear separation of concerns in cost tracking module
## Compliance
This decision aligns with:
- FR-801: Real-time cost tracking
- FR-802: Budget configuration (soft/hard limits)
- FR-803: Budget alerts
- FR-804: Cost analytics
- NFR-602: Logging and monitoring (cost observability)
- BR-002: Cost overruns from API usage (risk mitigation)
---
*This ADR establishes the cost tracking and budget management architecture for Syndarix.*