forked from cardosofelipe/fast-next-template
Add comprehensive spike research documents: - SPIKE-002: Agent Orchestration Pattern (LangGraph + Temporal hybrid) - SPIKE-006: Knowledge Base pgvector (RAG with hybrid search) - SPIKE-007: Agent Communication Protocol (JSON-RPC + Redis Streams) - SPIKE-008: Workflow State Machine (transitions lib + event sourcing) - SPIKE-009: Issue Synchronization (bi-directional sync with conflict resolution) - SPIKE-010: Cost Tracking (LiteLLM callbacks + budget enforcement) - SPIKE-011: Audit Logging (structured event sourcing) - SPIKE-012: Client Approval Flow (checkpoint-based approvals) Add architecture documentation: - ARCHITECTURE_DEEP_ANALYSIS.md: Memory management, security, testing strategy - IMPLEMENTATION_ROADMAP.md: 6-phase, 24-week implementation plan Closes #2, #6, #7, #8, #9, #10, #11, #12 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
681 lines
34 KiB
Markdown
681 lines
34 KiB
Markdown
# Syndarix Architecture Deep Analysis
|
||
|
||
**Version:** 1.0
|
||
**Date:** 2025-12-29
|
||
**Status:** Draft - Architectural Thinking
|
||
|
||
---
|
||
|
||
## Executive Summary
|
||
|
||
This document captures deep architectural thinking about Syndarix beyond the immediate spikes. It addresses complex challenges that arise when building a truly autonomous multi-agent system and proposes solutions based on first principles.
|
||
|
||
---
|
||
|
||
## 1. Agent Memory and Context Management
|
||
|
||
### The Challenge
|
||
|
||
Agents in Syndarix may work on projects for weeks or months. LLM context windows are finite (128K-200K tokens), but project context grows unboundedly. How do we maintain coherent agent "memory" over time?
|
||
|
||
### Analysis
|
||
|
||
**Context Window Constraints:**
|
||
| Model | Context Window | Practical Limit (with tools) |
|
||
|-------|---------------|------------------------------|
|
||
| Claude 3.5 Sonnet | 200K tokens | ~150K usable |
|
||
| GPT-4 Turbo | 128K tokens | ~100K usable |
|
||
| Llama 3 (70B) | 8K-128K tokens | ~80K usable |
|
||
|
||
**Memory Types Needed:**
|
||
1. **Working Memory** - Current task context (fits in context window)
|
||
2. **Short-term Memory** - Recent conversation history (RAG-retrievable)
|
||
3. **Long-term Memory** - Project knowledge, past decisions (RAG + summarization)
|
||
4. **Episodic Memory** - Specific past events/mistakes to learn from
|
||
|
||
### Proposed Architecture
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Agent Memory System │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
|
||
│ │ Working │ │ Short-term │ │ Long-term │ │
|
||
│ │ Memory │ │ Memory │ │ Memory │ │
|
||
│ │ (Context) │ │ (Redis) │ │ (pgvector) │ │
|
||
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
|
||
│ │ │ │ │
|
||
│ └───────────────────┼──────────────────┘ │
|
||
│ │ │
|
||
│ ▼ │
|
||
│ ┌──────────────────────────────────────────────────────────┐ │
|
||
│ │ Context Assembler │ │
|
||
│ │ │ │
|
||
│ │ 1. System prompt (agent personality, role) │ │
|
||
│ │ 2. Project context (from long-term memory) │ │
|
||
│ │ 3. Task context (current issue, requirements) │ │
|
||
│ │ 4. Relevant history (from short-term memory) │ │
|
||
│ │ 5. User message │ │
|
||
│ │ │ │
|
||
│ │ Total: Fit within context window limits │ │
|
||
│ └──────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
**Context Compression Strategy:**
|
||
```python
|
||
class ContextManager:
|
||
"""Manages agent context to fit within LLM limits."""
|
||
|
||
MAX_CONTEXT_TOKENS = 100_000 # Leave room for response
|
||
|
||
async def build_context(
|
||
self,
|
||
agent: AgentInstance,
|
||
task: Task,
|
||
user_message: str
|
||
) -> list[Message]:
|
||
# Fixed costs
|
||
system_prompt = self._get_system_prompt(agent) # ~2K tokens
|
||
task_context = self._get_task_context(task) # ~1K tokens
|
||
|
||
# Variable budget
|
||
remaining = self.MAX_CONTEXT_TOKENS - token_count(system_prompt, task_context, user_message)
|
||
|
||
# Allocate remaining to memories
|
||
long_term = await self._query_long_term(agent, task, budget=remaining * 0.4)
|
||
short_term = await self._get_short_term(agent, budget=remaining * 0.4)
|
||
episodic = await self._get_relevant_episodes(agent, task, budget=remaining * 0.2)
|
||
|
||
return self._assemble_messages(
|
||
system_prompt, task_context, long_term, short_term, episodic, user_message
|
||
)
|
||
```
|
||
|
||
**Conversation Summarization:**
|
||
- After every N turns (e.g., 10), summarize conversation and archive
|
||
- Use smaller/cheaper model for summarization
|
||
- Store summaries in pgvector for semantic retrieval
|
||
|
||
### Recommendation
|
||
|
||
Implement a **tiered memory system** with automatic context compression and semantic retrieval. Use Redis for hot short-term memory, pgvector for cold long-term memory, and automatic summarization to prevent context overflow.
|
||
|
||
---
|
||
|
||
## 2. Cross-Project Knowledge Sharing
|
||
|
||
### The Challenge
|
||
|
||
Each project has isolated knowledge, but agents could benefit from cross-project learnings:
|
||
- Common patterns (authentication, testing, CI/CD)
|
||
- Technology expertise (how to configure Kubernetes)
|
||
- Anti-patterns (what didn't work before)
|
||
|
||
### Analysis
|
||
|
||
**Privacy Considerations:**
|
||
- Client data must remain isolated (contractual, legal)
|
||
- Technical patterns are generally shareable
|
||
- Need clear data classification
|
||
|
||
**Knowledge Categories:**
|
||
| Category | Scope | Examples |
|
||
|----------|-------|----------|
|
||
| **Client Data** | Project-only | Requirements, business logic, code |
|
||
| **Technical Patterns** | Global | Best practices, configurations |
|
||
| **Agent Learnings** | Global | What approaches worked/failed |
|
||
| **Anti-patterns** | Global | Common mistakes to avoid |
|
||
|
||
### Proposed Architecture
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Knowledge Graph │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ GLOBAL KNOWLEDGE │ │
|
||
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
|
||
│ │ │ Patterns │ │ Anti-patterns│ │ Expertise │ │ │
|
||
│ │ │ Library │ │ Library │ │ Index │ │ │
|
||
│ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ ▲ │
|
||
│ │ Curated extraction │
|
||
│ │ │
|
||
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
|
||
│ │ Project A │ │ Project B │ │ Project C │ │
|
||
│ │ Knowledge │ │ Knowledge │ │ Knowledge │ │
|
||
│ │ (Isolated) │ │ (Isolated) │ │ (Isolated) │ │
|
||
│ └─────────────┘ └─────────────┘ └─────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
**Knowledge Extraction Pipeline:**
|
||
```python
|
||
class KnowledgeExtractor:
|
||
"""Extracts shareable learnings from project work."""
|
||
|
||
async def extract_learnings(self, project_id: str) -> list[Learning]:
|
||
"""
|
||
Run periodically or after sprints to extract learnings.
|
||
Human review required before promoting to global.
|
||
"""
|
||
# Get completed work
|
||
completed_issues = await self.get_completed_issues(project_id)
|
||
|
||
# Extract patterns using LLM
|
||
patterns = await self.llm.extract_patterns(
|
||
completed_issues,
|
||
categories=["architecture", "testing", "deployment", "security"]
|
||
)
|
||
|
||
# Classify privacy
|
||
for pattern in patterns:
|
||
pattern.privacy_level = await self.llm.classify_privacy(pattern)
|
||
|
||
# Return only shareable patterns for review
|
||
return [p for p in patterns if p.privacy_level == "public"]
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Implement **privacy-aware knowledge extraction** with human review gate. Project knowledge stays isolated by default; only explicitly approved patterns flow to global knowledge.
|
||
|
||
---
|
||
|
||
## 3. Agent Specialization vs Generalization Trade-offs
|
||
|
||
### The Challenge
|
||
|
||
Should each agent type be highly specialized (depth) or have overlapping capabilities (breadth)?
|
||
|
||
### Analysis
|
||
|
||
**Specialization Benefits:**
|
||
- Deeper expertise in domain
|
||
- Cleaner system prompts
|
||
- Less confusion about responsibilities
|
||
- Easier to optimize prompts per role
|
||
|
||
**Generalization Benefits:**
|
||
- Fewer agent types to maintain
|
||
- Smoother handoffs (shared context)
|
||
- More flexible team composition
|
||
- Graceful degradation if agent unavailable
|
||
|
||
**Current Agent Types (10):**
|
||
| Role | Primary Domain | Potential Overlap |
|
||
|------|---------------|-------------------|
|
||
| Product Owner | Requirements | Business Analyst |
|
||
| Business Analyst | Documentation | Product Owner |
|
||
| Project Manager | Planning | Product Owner |
|
||
| Software Architect | Design | Senior Engineer |
|
||
| Software Engineer | Coding | Architect, QA |
|
||
| UI/UX Designer | Interface | Frontend Engineer |
|
||
| QA Engineer | Testing | Software Engineer |
|
||
| DevOps Engineer | Infrastructure | Senior Engineer |
|
||
| AI/ML Engineer | ML/AI | Software Engineer |
|
||
| Security Expert | Security | All |
|
||
|
||
### Proposed Approach: Layered Specialization
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Agent Capability Layers │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ Layer 3: Role-Specific Expertise │
|
||
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
|
||
│ │ Product │ │ Architect│ │Engineer │ │ QA │ │
|
||
│ │ Owner │ │ │ │ │ │ │ │
|
||
│ └────┬────┘ └────┬────┘ └────┬────┘ └────┬────┘ │
|
||
│ │ │ │ │ │
|
||
│ Layer 2: Shared Professional Skills │
|
||
│ ┌──────────────────────────────────────────────────────┐ │
|
||
│ │ Technical Communication | Code Understanding | Git │ │
|
||
│ │ Documentation | Research | Problem Decomposition │ │
|
||
│ └──────────────────────────────────────────────────────┘ │
|
||
│ │ │
|
||
│ Layer 1: Foundation Model Capabilities │
|
||
│ ┌──────────────────────────────────────────────────────┐ │
|
||
│ │ Reasoning | Analysis | Writing | Coding (LLM Base) │ │
|
||
│ └──────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
**Capability Inheritance:**
|
||
```python
|
||
class AgentTypeBuilder:
|
||
"""Builds agent types with layered capabilities."""
|
||
|
||
BASE_CAPABILITIES = [
|
||
"reasoning", "analysis", "writing", "coding_assist"
|
||
]
|
||
|
||
PROFESSIONAL_SKILLS = [
|
||
"technical_communication", "code_understanding",
|
||
"git_operations", "documentation", "research"
|
||
]
|
||
|
||
ROLE_SPECIFIC = {
|
||
"ENGINEER": ["code_generation", "code_review", "testing", "debugging"],
|
||
"ARCHITECT": ["system_design", "adr_writing", "tech_selection"],
|
||
"QA": ["test_planning", "test_automation", "bug_reporting"],
|
||
# ...
|
||
}
|
||
|
||
def build_capabilities(self, role: AgentRole) -> list[str]:
|
||
return (
|
||
self.BASE_CAPABILITIES +
|
||
self.PROFESSIONAL_SKILLS +
|
||
self.ROLE_SPECIFIC[role]
|
||
)
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Adopt **layered specialization** where all agents share foundational and professional capabilities, with role-specific expertise on top. This enables smooth collaboration while maintaining clear responsibilities.
|
||
|
||
---
|
||
|
||
## 4. Human-Agent Collaboration Model
|
||
|
||
### The Challenge
|
||
|
||
Beyond approval gates, how do humans effectively collaborate with autonomous agents during active work?
|
||
|
||
### Interaction Patterns
|
||
|
||
| Pattern | Use Case | Frequency |
|
||
|---------|----------|-----------|
|
||
| **Approval** | Confirm before action | Per checkpoint |
|
||
| **Guidance** | Steer direction | On-demand |
|
||
| **Override** | Correct mistake | Rare |
|
||
| **Pair Working** | Work together | Optional |
|
||
| **Review** | Evaluate output | Post-completion |
|
||
|
||
### Proposed Collaboration Interface
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Human-Agent Collaboration Dashboard │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ Activity Stream │ │
|
||
│ │ ────────────────────────────────────────────────────── │ │
|
||
│ │ [10:23] Dave (Engineer) is implementing login API │ │
|
||
│ │ [10:24] Dave created auth/service.py │ │
|
||
│ │ [10:25] Dave is writing unit tests │ │
|
||
│ │ [LIVE] Dave: "I'm adding JWT validation. Using HS256..." │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ Intervention Panel │ │
|
||
│ │ │ │
|
||
│ │ [💬 Chat] [⏸️ Pause] [↩️ Undo Last] [📝 Guide] │ │
|
||
│ │ │ │
|
||
│ │ Quick Guidance: │ │
|
||
│ │ ┌─────────────────────────────────────────────────┐ │ │
|
||
│ │ │ "Use RS256 instead of HS256 for JWT signing" │ │ │
|
||
│ │ │ [Send] 📤 │ │ │
|
||
│ │ └─────────────────────────────────────────────────┘ │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
**Intervention API:**
|
||
```python
|
||
@router.post("/agents/{agent_id}/intervene")
|
||
async def intervene(
|
||
agent_id: UUID,
|
||
intervention: InterventionRequest,
|
||
current_user: User = Depends(get_current_user)
|
||
):
|
||
"""Allow human to intervene in agent work."""
|
||
match intervention.type:
|
||
case "pause":
|
||
await orchestrator.pause_agent(agent_id)
|
||
case "resume":
|
||
await orchestrator.resume_agent(agent_id)
|
||
case "guide":
|
||
await orchestrator.send_guidance(agent_id, intervention.message)
|
||
case "undo":
|
||
await orchestrator.undo_last_action(agent_id)
|
||
case "override":
|
||
await orchestrator.override_decision(agent_id, intervention.decision)
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Build a **real-time collaboration dashboard** with intervention capabilities. Humans should be able to observe, guide, pause, and correct agents without stopping the entire workflow.
|
||
|
||
---
|
||
|
||
## 5. Testing Strategy for Autonomous AI Systems
|
||
|
||
### The Challenge
|
||
|
||
Traditional testing (unit, integration, E2E) doesn't capture autonomous agent behavior. How do we ensure quality?
|
||
|
||
### Testing Pyramid for AI Agents
|
||
|
||
```
|
||
▲
|
||
╱ ╲
|
||
╱ ╲
|
||
╱ E2E ╲ Agent Scenarios
|
||
╱ Agent ╲ (Full workflows)
|
||
╱─────────╲
|
||
╱ Integration╲ Tool + LLM Integration
|
||
╱ (with mocks) ╲ (Deterministic responses)
|
||
╱─────────────────╲
|
||
╱ Unit Tests ╲ Orchestrator, Services
|
||
╱ (no LLM needed) ╲ (Pure logic)
|
||
╱───────────────────────╲
|
||
╱ Prompt Testing ╲ System prompt evaluation
|
||
╱ (LLM evals) ╲(Quality metrics)
|
||
╱─────────────────────────────╲
|
||
```
|
||
|
||
### Test Categories
|
||
|
||
**1. Prompt Testing (Eval Framework):**
|
||
```python
|
||
class PromptEvaluator:
|
||
"""Evaluate system prompt quality."""
|
||
|
||
TEST_CASES = [
|
||
EvalCase(
|
||
name="requirement_extraction",
|
||
input="Client wants a mobile app for food delivery",
|
||
expected_behaviors=[
|
||
"asks clarifying questions",
|
||
"identifies stakeholders",
|
||
"considers non-functional requirements"
|
||
]
|
||
),
|
||
EvalCase(
|
||
name="code_review_thoroughness",
|
||
input="Review this PR: [vulnerable SQL code]",
|
||
expected_behaviors=[
|
||
"identifies SQL injection",
|
||
"suggests parameterized queries",
|
||
"mentions security best practices"
|
||
]
|
||
)
|
||
]
|
||
|
||
async def evaluate(self, agent_type: AgentType) -> EvalReport:
|
||
results = []
|
||
for case in self.TEST_CASES:
|
||
response = await self.llm.complete(
|
||
system=agent_type.system_prompt,
|
||
user=case.input
|
||
)
|
||
score = await self.judge_response(response, case.expected_behaviors)
|
||
results.append(score)
|
||
return EvalReport(results)
|
||
```
|
||
|
||
**2. Integration Testing (Mock LLM):**
|
||
```python
|
||
@pytest.fixture
|
||
def mock_llm():
|
||
"""Deterministic LLM responses for integration tests."""
|
||
responses = {
|
||
"analyze requirements": "...",
|
||
"generate code": "def hello(): return 'world'",
|
||
"review code": "LGTM"
|
||
}
|
||
return MockLLM(responses)
|
||
|
||
async def test_story_implementation_workflow(mock_llm):
|
||
"""Test full workflow with predictable responses."""
|
||
orchestrator = AgentOrchestrator(llm=mock_llm)
|
||
|
||
result = await orchestrator.execute_workflow(
|
||
workflow="implement_story",
|
||
inputs={"story_id": "TEST-123"}
|
||
)
|
||
|
||
assert result.status == "completed"
|
||
assert "hello" in result.artifacts["code"]
|
||
```
|
||
|
||
**3. Agent Scenario Testing:**
|
||
```python
|
||
class AgentScenarioTest:
|
||
"""End-to-end agent behavior testing."""
|
||
|
||
@scenario("engineer_handles_bug_report")
|
||
async def test_bug_resolution(self):
|
||
"""Engineer agent should fix bugs correctly."""
|
||
# Setup
|
||
project = await create_test_project()
|
||
engineer = await spawn_agent("engineer", project)
|
||
|
||
# Act
|
||
bug = await create_issue(
|
||
project,
|
||
title="Login button not working",
|
||
type="bug"
|
||
)
|
||
result = await engineer.handle(bug)
|
||
|
||
# Assert
|
||
assert result.pr_created
|
||
assert result.tests_pass
|
||
assert "button" in result.changes_summary.lower()
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Implement a **multi-layer testing strategy** with prompt evals, deterministic integration tests, and scenario-based agent testing. Use LLM-as-judge for evaluating open-ended responses.
|
||
|
||
---
|
||
|
||
## 6. Rollback and Recovery
|
||
|
||
### The Challenge
|
||
|
||
Autonomous agents will make mistakes. How do we recover gracefully?
|
||
|
||
### Error Categories
|
||
|
||
| Category | Example | Recovery Strategy |
|
||
|----------|---------|-------------------|
|
||
| **Reversible** | Wrong code generated | Revert commit, regenerate |
|
||
| **Partially Reversible** | Merged bad PR | Revert PR, fix, re-merge |
|
||
| **Non-reversible** | Deployed to production | Forward-fix or rollback deploy |
|
||
| **External Side Effects** | Email sent to client | Apology + correction |
|
||
|
||
### Recovery Architecture
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Recovery System │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ Action Log │ │
|
||
│ │ ┌──────────────────────────────────────────────────┐ │ │
|
||
│ │ │ Action ID | Agent | Type | Reversible | State │ │ │
|
||
│ │ ├──────────────────────────────────────────────────┤ │ │
|
||
│ │ │ a-001 | Dave | commit | Yes | completed │ │ │
|
||
│ │ │ a-002 | Dave | push | Yes | completed │ │ │
|
||
│ │ │ a-003 | Dave | create_pr | Yes | completed │ │ │
|
||
│ │ │ a-004 | Kate | merge_pr | Partial | completed │ │ │
|
||
│ │ └──────────────────────────────────────────────────┘ │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ Rollback Engine │ │
|
||
│ │ │ │
|
||
│ │ rollback_to(action_id) -> Reverses all actions after │ │
|
||
│ │ undo_action(action_id) -> Reverses single action │ │
|
||
│ │ compensate(action_id) -> Creates compensating action │ │
|
||
│ │ │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
**Action Logging:**
|
||
```python
|
||
class ActionLog:
|
||
"""Immutable log of all agent actions for recovery."""
|
||
|
||
async def record(
|
||
self,
|
||
agent_id: UUID,
|
||
action_type: str,
|
||
inputs: dict,
|
||
outputs: dict,
|
||
reversible: bool,
|
||
reverse_action: str | None = None
|
||
) -> ActionRecord:
|
||
record = ActionRecord(
|
||
id=uuid4(),
|
||
agent_id=agent_id,
|
||
action_type=action_type,
|
||
inputs=inputs,
|
||
outputs=outputs,
|
||
reversible=reversible,
|
||
reverse_action=reverse_action,
|
||
timestamp=datetime.utcnow()
|
||
)
|
||
await self.db.add(record)
|
||
return record
|
||
|
||
async def rollback_to(self, action_id: UUID) -> RollbackResult:
|
||
"""Rollback all actions after the given action."""
|
||
actions = await self.get_actions_after(action_id)
|
||
|
||
results = []
|
||
for action in reversed(actions):
|
||
if action.reversible:
|
||
result = await self._execute_reverse(action)
|
||
results.append(result)
|
||
else:
|
||
results.append(RollbackSkipped(action, reason="non-reversible"))
|
||
|
||
return RollbackResult(results)
|
||
```
|
||
|
||
**Compensation Pattern:**
|
||
```python
|
||
class CompensationEngine:
|
||
"""Handles compensating actions for non-reversible operations."""
|
||
|
||
COMPENSATIONS = {
|
||
"email_sent": "send_correction_email",
|
||
"deployment": "rollback_deployment",
|
||
"external_api_call": "create_reversal_request"
|
||
}
|
||
|
||
async def compensate(self, action: ActionRecord) -> CompensationResult:
|
||
if action.action_type in self.COMPENSATIONS:
|
||
compensation = self.COMPENSATIONS[action.action_type]
|
||
return await self._execute_compensation(compensation, action)
|
||
else:
|
||
return CompensationResult(
|
||
status="manual_required",
|
||
message=f"No automatic compensation for {action.action_type}"
|
||
)
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Implement **comprehensive action logging** with rollback capabilities. Define compensation strategies for non-reversible actions. Enable point-in-time recovery for project state.
|
||
|
||
---
|
||
|
||
## 7. Security Considerations for Autonomous Agents
|
||
|
||
### Threat Model
|
||
|
||
| Threat | Risk | Mitigation |
|
||
|--------|------|------------|
|
||
| Agent executes malicious code | High | Sandboxed execution, code review gates |
|
||
| Agent exfiltrates data | High | Network isolation, output filtering |
|
||
| Prompt injection via user input | Medium | Input sanitization, prompt hardening |
|
||
| Agent credential abuse | Medium | Least-privilege tokens, short TTL |
|
||
| Agent collusion | Low | Independent agent instances, monitoring |
|
||
|
||
### Security Architecture
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────────────────┐
|
||
│ Security Layers │
|
||
├─────────────────────────────────────────────────────────────────┤
|
||
│ │
|
||
│ Layer 4: Output Filtering │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ - Code scan before commit │ │
|
||
│ │ - Secrets detection │ │
|
||
│ │ - Policy compliance check │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
│ Layer 3: Action Authorization │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ - Role-based permissions │ │
|
||
│ │ - Project scope enforcement │ │
|
||
│ │ - Sensitive action approval │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
│ Layer 2: Input Sanitization │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ - Prompt injection detection │ │
|
||
│ │ - Content filtering │ │
|
||
│ │ - Schema validation │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
│ Layer 1: Infrastructure Isolation │
|
||
│ ┌─────────────────────────────────────────────────────────┐ │
|
||
│ │ - Container sandboxing │ │
|
||
│ │ - Network segmentation │ │
|
||
│ │ - File system restrictions │ │
|
||
│ └─────────────────────────────────────────────────────────┘ │
|
||
│ │
|
||
└─────────────────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
### Recommendation
|
||
|
||
Implement **defense-in-depth** with multiple security layers. Assume agents can be compromised and design for containment.
|
||
|
||
---
|
||
|
||
## Summary of Recommendations
|
||
|
||
| Area | Recommendation | Priority |
|
||
|------|----------------|----------|
|
||
| Memory | Tiered memory with context compression | High |
|
||
| Knowledge | Privacy-aware extraction with human gate | Medium |
|
||
| Specialization | Layered capabilities with role-specific top | Medium |
|
||
| Collaboration | Real-time dashboard with intervention | High |
|
||
| Testing | Multi-layer with prompt evals | High |
|
||
| Recovery | Action logging with rollback engine | High |
|
||
| Security | Defense-in-depth, assume compromise | High |
|
||
|
||
---
|
||
|
||
## Next Steps
|
||
|
||
1. **Validate with spike research** - Update based on spike findings
|
||
2. **Create detailed ADRs** - For memory, recovery, security
|
||
3. **Prototype critical paths** - Memory system, rollback engine
|
||
4. **Security review** - External audit before production
|
||
|
||
---
|
||
|
||
*This document captures architectural thinking to guide implementation. It should be updated as spikes complete and design evolves.*
|