Files
syndarix/docs/architecture/MCP_SERVERS.md
Felipe Cardoso 2ab69f8561 docs(mcp): add comprehensive MCP server documentation
- Add docs/architecture/MCP_SERVERS.md with full architecture overview
- Add README.md for LLM Gateway with quick start, tools, and model groups
- Add README.md for Knowledge Base with search types, chunking strategies
- Include API endpoints, security guidelines, and testing instructions

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-04 01:37:04 +01:00

193 lines
7.0 KiB
Markdown

# MCP Servers Architecture
This document describes the Model Context Protocol (MCP) server architecture in Syndarix.
## Overview
Syndarix uses MCP servers to provide specialized capabilities to AI agents. Each MCP server exposes tools via JSON-RPC 2.0 that agents can invoke through the MCPClientManager.
## Architecture Diagram
```
┌─────────────────────────────────────────────────────────────────────┐
│ Backend (FastAPI) │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ MCPClientManager │ │
│ │ - Connection pooling - Health checks - Tool routing │ │
│ └──────────────────────────┬──────────────────────────────────┘ │
└─────────────────────────────┼───────────────────────────────────────┘
│ HTTP/JSON-RPC 2.0
┌───────────────────┼───────────────────┐
│ │ │
▼ ▼ ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ LLM Gateway │ │ Knowledge Base │ │ Future MCP │
│ Port 8001 │ │ Port 8002 │ │ Servers │
│ │ │ │ │ │
│ - chat_complete │ │ - search │ │ - git_ops │
│ - count_tokens │ │ - ingest │ │ - issues │
│ - list_models │ │ - delete │ │ - etc. │
│ - get_usage │ │ - update │ │ │
└────────┬────────┘ └────────┬────────┘ └─────────────────┘
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ LiteLLM │ │ PostgreSQL │
│ (Anthropic, │ │ + pgvector │
│ OpenAI, etc.) │ │ │
└─────────────────┘ └─────────────────┘
```
## MCP Servers
### 1. LLM Gateway (`mcp-servers/llm-gateway/`)
**Purpose**: Unified access to multiple LLM providers with failover, streaming, and cost tracking.
**Port**: 8001
**Tools**:
| Tool | Description |
|------|-------------|
| `chat_completion` | Generate completions with automatic failover |
| `count_tokens` | Count tokens in text using tiktoken |
| `list_models` | List available models by group |
| `get_usage` | Get token/cost usage statistics |
**Model Groups**:
- `reasoning`: Claude Opus 4.5 → GPT-4.1 → Gemini 2.5 Pro
- `code`: Claude Sonnet 4 → Codex → DeepSeek Coder
- `fast`: Claude Haiku → GPT-4.1 Mini → Gemini Flash
- `vision`: Claude Opus 4.5 → GPT-4.1 Vision
- `embedding`: text-embedding-3-large → voyage-3
**Features**:
- Circuit breaker for provider failures (5 failures → 30s cooldown)
- Redis-based cost tracking per project/agent
- Streaming support via SSE
- Automatic failover chain
### 2. Knowledge Base (`mcp-servers/knowledge-base/`)
**Purpose**: RAG capabilities with pgvector for semantic search, intelligent chunking, and collection management.
**Port**: 8002
**Tools**:
| Tool | Description |
|------|-------------|
| `search_knowledge` | Semantic, keyword, or hybrid search |
| `ingest_content` | Add content with automatic chunking |
| `delete_content` | Remove by source, collection, or IDs |
| `list_collections` | List collections in a project |
| `get_collection_stats` | Get collection statistics |
| `update_document` | Atomically replace document content |
**Chunking Strategies**:
- **Code**: AST-aware for Python, tree-sitter for JS/TS/Go/Rust
- **Markdown**: Heading-hierarchy aware, preserves structure
- **Text**: Sentence-based with configurable overlap
**Search Types**:
- **Semantic**: pgvector cosine similarity (HNSW index)
- **Keyword**: PostgreSQL full-text search (ts_rank)
- **Hybrid**: Reciprocal Rank Fusion (RRF) combining both
**Features**:
- Redis caching for embedding deduplication
- 1536-dimension embeddings via LLM Gateway
- Atomic document updates (delete + insert in transaction)
- Per-project collection isolation
## Communication Protocol
All MCP servers use JSON-RPC 2.0 over HTTP:
### Tool Discovery
```
GET /mcp/tools
Response: { "tools": [{ "name": "...", "description": "...", "inputSchema": {...} }] }
```
### Tool Execution
```
POST /mcp
Request: {
"jsonrpc": "2.0",
"method": "tool_name",
"params": { "project_id": "...", "agent_id": "...", ... },
"id": 1
}
Response: {
"jsonrpc": "2.0",
"result": { "success": true, ... },
"id": 1
}
```
### Health Check
```
GET /health
Response: { "status": "healthy", "dependencies": {...} }
```
## Configuration
### Environment Variables
**LLM Gateway**:
```bash
LLM_GATEWAY_HOST=0.0.0.0
LLM_GATEWAY_PORT=8001
LLM_GATEWAY_REDIS_URL=redis://redis:6379/1
ANTHROPIC_API_KEY=...
OPENAI_API_KEY=...
```
**Knowledge Base**:
```bash
KB_HOST=0.0.0.0
KB_PORT=8002
KB_DATABASE_URL=postgresql://...
KB_REDIS_URL=redis://redis:6379/2
KB_LLM_GATEWAY_URL=http://llm-gateway:8001
```
## Security
### Input Validation
- `project_id`, `agent_id`: Alphanumeric + hyphens/underscores (1-128 chars)
- `collection`: Alphanumeric + hyphens/underscores (1-64 chars)
- `source_path`: No path traversal (`..`), no null bytes, max 4096 chars
- `content`: Max size limit (configurable, default 10MB)
### Error Codes
| Code | Meaning |
|------|---------|
| `INVALID_REQUEST` | Input validation failed |
| `NOT_FOUND` | Resource not found |
| `INTERNAL_ERROR` | Unexpected server error |
| `EMBEDDING_ERROR` | Embedding generation failed |
| `SEARCH_ERROR` | Search operation failed |
## Testing
```bash
# Run LLM Gateway tests
cd mcp-servers/llm-gateway
IS_TEST=True uv run pytest -v --cov=.
# Run Knowledge Base tests
cd mcp-servers/knowledge-base
IS_TEST=True uv run pytest -v --cov=.
```
## Adding New MCP Servers
1. Create directory under `mcp-servers/<name>/`
2. Use FastMCP for tool registration
3. Implement `/health`, `/mcp/tools`, `/mcp` endpoints
4. Add Docker configuration
5. Register in MCPClientManager config
6. Add tests (>90% coverage target)