Files
syndarix/docs/adrs/ADR-007-agentic-framework-selection.md
Felipe Cardoso 88cf4e0abc feat: Update to production model stack and fix remaining inconsistencies
## Model Stack Updates (User's Actual Models)

Updated all documentation to reflect production models:
- Claude Opus 4.5 (primary reasoning)
- GPT 5.1 Codex max (code generation specialist)
- Gemini 3 Pro/Flash (multimodal, fast inference)
- Qwen3-235B (cost-effective, self-hostable)
- DeepSeek V3.2 (self-hosted, open weights)

### Files Updated:
- ADR-004: Full model groups, failover chains, cost tables
- ADR-007: Code example with correct model identifiers
- ADR-012: Cost tracking with new model prices
- ARCHITECTURE.md: Model groups, failover diagram
- IMPLEMENTATION_ROADMAP.md: External services list

## Architecture Diagram Updates

- Added LangGraph Runtime to orchestration layer
- Added technology labels (Type-Instance, transitions)

## Self-Hostability Table Expanded

Added entries for:
- LangGraph (MIT)
- transitions (MIT)
- DeepSeek V3.2 (MIT)
- Qwen3-235B (Apache 2.0)

## Metric Alignments

- Response time: Split into API (<200ms) and Agent (<10s/<60s)
- Cost per project: Adjusted to $100/sprint for Opus 4.5 pricing
- Added concurrent projects (10+) and agents (50+) metrics

## Infrastructure Updates

- Celery workers: 4-8 instances (was 2-4) across 4 queues
- MCP servers: Clarified Phase 2 + Phase 5 deployment
- Sync interval: Clarified 60s fallback + 15min reconciliation

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-29 23:35:51 +01:00

413 lines
20 KiB
Markdown

# ADR-007: Agentic Framework Selection
**Status:** Accepted
**Date:** 2025-12-29
**Deciders:** Architecture Team
**Related Spikes:** SPIKE-002, SPIKE-005, SPIKE-007
---
## Context
Syndarix requires a robust multi-agent orchestration system capable of:
- Managing 50+ concurrent agent instances
- Supporting long-running workflows (sprints spanning days/weeks)
- Providing durable execution that survives crashes/restarts
- Enabling human-in-the-loop at configurable autonomy levels
- Tracking token usage and costs per agent instance
- Supporting multi-provider LLM failover
We evaluated whether to adopt an existing framework wholesale or build a custom solution.
## Decision Drivers
- **Production Readiness:** Must be battle-tested, not experimental
- **Self-Hostability:** All components must be self-hostable with no mandatory subscriptions
- **Flexibility:** Must support Syndarix-specific patterns (autonomy levels, client approvals)
- **Durability:** Workflows must survive failures, restarts, and deployments
- **Observability:** Full visibility into agent activities and costs
- **Scalability:** Handle 50+ concurrent agents without architectural changes
## Considered Options
### Option 1: CrewAI (Full Framework)
**Pros:**
- Easy to get started (role-based agents)
- Good for sequential/hierarchical workflows
- Strong enterprise traction ($18M Series A, 60% Fortune 500)
- LLM-agnostic design
**Cons:**
- Teams report hitting walls at 6-12 months of complexity
- Multi-agent coordination can cause infinite loops
- Limited ceiling for complex custom patterns
- Flows architecture adds learning curve without solving durability
**Verdict:** Rejected - insufficient flexibility for Syndarix's complex requirements
### Option 2: AutoGen 0.4 (Full Framework)
**Pros:**
- Event-driven, async-first architecture
- Cross-language support (.NET, Python)
- Built-in observability (OpenTelemetry)
- Microsoft ecosystem integration
**Cons:**
- Tied to Microsoft patterns
- Less flexible for custom orchestration
- Newer 0.4 version still maturing
- No built-in durability for week-long workflows
**Verdict:** Rejected - too opinionated, insufficient durability
### Option 3: LangGraph + Custom Infrastructure (Hybrid)
**Pros:**
- Fine-grained control over agent flow
- Excellent state management with PostgreSQL persistence
- Human-in-the-loop built-in
- Production-proven (Klarna, Replit, Elastic)
- Fully open source (MIT license)
- Can implement any pattern (supervisor, hierarchical, peer-to-peer)
**Cons:**
- Steep learning curve (graph theory, state machines)
- Needs additional infrastructure for durability (Temporal)
- Observability requires additional tooling
**Verdict:** Selected as foundation
### Option 4: Fully Custom Solution
**Pros:**
- Complete control
- No external dependencies
- Tailored to exact requirements
**Cons:**
- Reinvents production-tested solutions
- Higher development and maintenance cost
- Longer time to market
- More bugs in critical path
**Verdict:** Rejected - unnecessary when proven components exist
## Decision
**Adopt a hybrid architecture using LangGraph as the core agent framework**, complemented by:
1. **LangGraph** - Agent state machines and logic
2. **transitions + PostgreSQL + Celery** - Durable workflow state machines
3. **Redis Streams** - Agent-to-agent communication
4. **LiteLLM** - Unified LLM access with failover
5. **PostgreSQL + pgvector** - State persistence and RAG
### Why Not Temporal?
After evaluating both approaches, we chose the simpler **transitions + PostgreSQL + Celery** stack over Temporal:
| Factor | Temporal | transitions + PostgreSQL |
|--------|----------|-------------------------|
| Complexity | High (separate cluster, workers, SDK) | Low (Python library + existing infra) |
| Learning Curve | Steep (new paradigm) | Gentle (familiar patterns) |
| Infrastructure | Dedicated cluster required | Uses existing PostgreSQL + Celery |
| Scale Target | Enterprise (1000s of workflows) | Syndarix (10s of agents) |
| Debugging | Temporal UI (powerful but complex) | Standard DB queries + logs |
**Temporal is overkill for our scale** (10-50 concurrent agents). The simpler approach provides:
- Full durability via PostgreSQL state persistence
- Event sourcing via transition history table
- Background execution via Celery workers
- Simpler debugging with standard tools
### Architecture Overview
```
┌─────────────────────────────────────────────────────────────────────────┐
│ Syndarix Agentic Architecture │
├─────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌───────────────────────────────────────────────────────────────────┐ │
│ │ Workflow Engine (transitions + PostgreSQL) │ │
│ │ │ │
│ │ • State persistence to PostgreSQL (survives restarts) │ │
│ │ • Event sourcing via workflow_transitions table │ │
│ │ • Human approval checkpoints (pause workflow, await signal) │ │
│ │ • Background execution via Celery workers │ │
│ │ │ │
│ │ License: MIT | Self-Hosted: Yes | Subscription: None Required │ │
│ └───────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────────────────────────┐ │
│ │ LangGraph Agent Runtime │ │
│ │ │ │
│ │ • Graph-based state machines for agent logic │ │
│ │ • Persistent checkpoints to PostgreSQL │ │
│ │ • Cycles, conditionals, parallel execution │ │
│ │ • Human-in-the-loop first-class support │ │
│ │ │ │
│ │ ┌─────────────────────────────────────────────────────────────┐ │ │
│ │ │ Agent State Graph │ │ │
│ │ │ [IDLE] ──► [THINKING] ──► [EXECUTING] ──► [WAITING] │ │ │
│ │ │ ▲ │ │ │ │ │ │
│ │ │ └─────────────┴──────────────┴──────────────┘ │ │ │
│ │ └─────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ │ License: MIT | Self-Hosted: Yes | Subscription: None Required │ │
│ └───────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────────────────────────┐ │
│ │ Redis Streams Communication Layer │ │
│ │ │ │
│ │ • Agent-to-Agent messaging (A2A protocol concepts) │ │
│ │ • Event-driven architecture │ │
│ │ • Real-time activity streaming to UI │ │
│ │ • Project-scoped message channels │ │
│ │ │ │
│ │ License: BSD-3 | Self-Hosted: Yes | Subscription: None Required │ │
│ └───────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───────────────────────────────────────────────────────────────────┐ │
│ │ LiteLLM Gateway │ │
│ │ │ │
│ │ • Unified API for 100+ LLM providers │ │
│ │ • Automatic failover chains (Claude → GPT-4 → Ollama) │ │
│ │ • Token counting and cost calculation │ │
│ │ • Rate limiting and load balancing │ │
│ │ │ │
│ │ License: MIT | Self-Hosted: Yes | Subscription: None Required │ │
│ └───────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────┘
```
### Component Responsibilities
| Component | Responsibility | Why This Choice |
|-----------|---------------|-----------------|
| **LangGraph** | Agent state machines, tool execution, reasoning loops | Production-proven, fine-grained control, PostgreSQL checkpointing |
| **transitions** | Workflow state machines (sprint, story, PR) | Lightweight, Pythonic, no external dependencies |
| **Celery + Redis** | Background task execution, async workflows | Already in stack, battle-tested |
| **PostgreSQL** | Workflow state persistence, event sourcing | ACID guarantees, survives restarts |
| **Redis Streams** | Agent messaging, real-time events, pub/sub | Low-latency, persistent streams, consumer groups |
| **LiteLLM** | LLM abstraction, failover, cost tracking | Unified API, automatic failover, no vendor lock-in |
### Reboot Survival (Durability)
The architecture **fully supports system reboots and crashes**:
1. **Workflow State**: Persisted to PostgreSQL `workflow_instances` table
2. **Transition History**: Event-sourced in `workflow_transitions` table
3. **Agent Checkpoints**: LangGraph persists to PostgreSQL
4. **Pending Tasks**: Celery tasks in Redis (configured with persistence)
**Recovery Process:**
```
System Restart
Load workflow_instances WHERE status = 'in_progress'
For each workflow:
├── Restore state from context JSONB
├── Identify current_state
├── Resume from last checkpoint
└── Continue execution
```
### Self-Hostability Guarantee
All components are fully self-hostable with permissive open-source licenses:
| Component | License | Paid Cloud Alternative | Required for Syndarix? |
|-----------|---------|----------------------|----------------------|
| LangGraph | MIT | LangSmith (observability) | No - use LangFuse or custom |
| transitions | MIT | N/A | N/A - simple library |
| Celery | BSD-3 | Various | No - self-host |
| LiteLLM | MIT | LiteLLM Enterprise | No - self-host proxy |
| Redis | BSD-3 | Redis Cloud | No - self-host |
| PostgreSQL | PostgreSQL | Various managed DBs | No - self-host |
**No mandatory subscriptions.** All paid alternatives are optional cloud-managed offerings.
### What We Build vs. What We Use
| Concern | Approach | Rationale |
|---------|----------|-----------|
| Agent Logic | **USE LangGraph** | Don't reinvent state machines |
| LLM Access | **USE LiteLLM** | Don't reinvent provider abstraction |
| Workflow State | **USE transitions + PostgreSQL** | Simple, durable, debuggable |
| Background Tasks | **USE Celery** | Already in stack, proven |
| Messaging | **USE Redis Streams** | Don't reinvent pub/sub |
| Orchestration | **BUILD thin layer** | Syndarix-specific (autonomy levels, team structure) |
| Agent Spawning | **BUILD thin layer** | Type-Instance pattern specific to Syndarix |
| Cost Attribution | **BUILD thin layer** | Per-agent, per-project tracking specific to Syndarix |
### Integration Pattern
```python
# Example: How the layers integrate
# 1. Workflow state machine (transitions library)
class SprintWorkflow(Machine):
states = ['planning', 'active', 'review', 'done']
def __init__(self, sprint_id: str):
self.sprint_id = sprint_id
Machine.__init__(
self,
states=self.states,
initial='planning',
after_state_change='persist_state'
)
self.add_transition('start', 'planning', 'active', before='spawn_agents')
self.add_transition('complete_work', 'active', 'review')
self.add_transition('approve', 'review', 'done', conditions='has_approval')
async def persist_state(self):
"""Save state to PostgreSQL (survives restarts)"""
await db.execute("""
UPDATE workflow_instances
SET current_state = $1, context = $2, updated_at = NOW()
WHERE id = $3
""", self.state, self.context, self.sprint_id)
# 2. Background execution via Celery
@celery_app.task(bind=True, max_retries=3)
def run_sprint_workflow(self, sprint_id: str):
workflow = SprintWorkflow.load(sprint_id) # Restore from DB
workflow.start() # Triggers agent spawning
# Workflow persists state, can resume after restart
# 3. LangGraph handles individual agent logic
def create_agent_graph() -> StateGraph:
graph = StateGraph(AgentState)
graph.add_node("think", think_node) # LLM reasoning
graph.add_node("execute", execute_node) # Tool calls via MCP
graph.add_node("handoff", handoff_node) # Message to other agent
# ... state transitions
return graph.compile(checkpointer=PostgresSaver(...))
# 4. LiteLLM handles LLM calls with failover
async def think_node(state: AgentState) -> AgentState:
response = await litellm.acompletion(
model="claude-opus-4-5", # Claude Opus 4.5 (primary)
messages=state["messages"],
fallbacks=["gpt-5.1-codex-max", "gemini-3-pro", "qwen3-235b", "deepseek-v3.2"],
metadata={"agent_id": state["agent_id"]},
)
return {"messages": [response.choices[0].message]}
# 5. Redis Streams handles agent communication
async def handoff_node(state: AgentState) -> AgentState:
await message_bus.publish(AgentMessage(
source_agent_id=state["agent_id"],
target_agent_id=state["handoff_target"],
message_type="TASK_HANDOFF",
payload=state["handoff_context"],
))
return state
```
### Human Approval Checkpoints
For workflows requiring human approval (FULL_CONTROL and MILESTONE modes):
```python
class StoryWorkflow(Machine):
async def request_approval_and_wait(self, action: str):
"""Pause workflow and await human decision."""
# 1. Create approval request
request = await approval_service.create(
workflow_id=self.id,
action=action,
context=self.context
)
# 2. Transition to waiting state (persisted)
self.state = 'awaiting_approval'
await self.persist_state()
# 3. Workflow is paused - Celery task completes
# When user approves, a new task resumes the workflow
@classmethod
async def resume_on_approval(cls, workflow_id: str, approved: bool):
"""Called when user makes a decision."""
workflow = await cls.load(workflow_id)
if approved:
workflow.trigger('approved')
else:
workflow.trigger('rejected')
```
## Consequences
### Positive
- **Production-tested foundations** - LangGraph, Celery, LiteLLM are battle-tested
- **No subscription lock-in** - All components self-hostable under permissive licenses
- **Right tool for each job** - Specialized components for state, communication, background processing
- **Escape hatches** - Can replace any component without full rewrite
- **Simpler operations** - Uses existing PostgreSQL + Redis infrastructure, no new services
- **Reboot survival** - Full durability via PostgreSQL persistence
### Negative
- **Multiple technologies to learn** - Team needs LangGraph, transitions, Redis Streams knowledge
- **Integration work** - Thin glue layers needed between components
- **Manual recovery logic** - Must implement workflow recovery on startup
### Mitigation
- **Learning curve** - Start with simple 2-3 agent workflows, expand gradually
- **Integration** - Create clear abstractions; each layer only knows its immediate neighbors
- **Recovery** - Implement startup recovery task that scans for in-progress workflows
## Compliance
This decision aligns with:
- **FR-101-105**: Agent management requirements (Type-Instance pattern)
- **FR-301-305**: Workflow execution requirements
- **NFR-402**: Fault tolerance (workflow durability, crash recovery)
- **TC-001**: PostgreSQL as primary database
- **Core Principle**: Self-hostability (all components MIT/BSD licensed)
## Alternatives Not Chosen
### LangSmith for Observability
LangSmith is LangChain's paid observability platform. Instead, we will:
- Use **LangFuse** (open source, self-hostable) for LLM observability
- Use standard logging + PostgreSQL queries for workflow visibility
- Build custom dashboards for Syndarix-specific metrics
### Temporal for Durable Workflows
Temporal was initially considered but rejected for this project:
- **Overkill for scale** - Syndarix targets 10-50 concurrent agents, not thousands
- **Operational overhead** - Requires separate cluster, workers, SDK learning curve
- **Simpler alternative available** - transitions + PostgreSQL provides equivalent durability
- **Migration path** - If scale demands grow, Temporal can be introduced later
## References
- [LangGraph Documentation](https://langchain-ai.github.io/langgraph/)
- [transitions Library](https://github.com/pytransitions/transitions)
- [LiteLLM Documentation](https://docs.litellm.ai/)
- [LangFuse (Open Source LLM Observability)](https://langfuse.com/)
- [SPIKE-002: Agent Orchestration Pattern](../spikes/SPIKE-002-agent-orchestration-pattern.md)
- [SPIKE-005: LLM Provider Abstraction](../spikes/SPIKE-005-llm-provider-abstraction.md)
- [SPIKE-008: Workflow State Machine](../spikes/SPIKE-008-workflow-state-machine.md)
- [ADR-010: Workflow State Machine](./ADR-010-workflow-state-machine.md)
---
*This ADR establishes the foundational framework choices for Syndarix's multi-agent orchestration system.*