Files
syndarix/mcp-servers/knowledge-base/server.py
Felipe Cardoso 6bb376a336 fix(mcp-kb): add input validation, path security, and health checks
Security fixes from deep review:
- Add input validation patterns for project_id, agent_id, collection
- Add path traversal protection for source_path (reject .., null bytes)
- Add error codes (INTERNAL_ERROR) to generic exception handlers
- Handle FieldInfo objects in validation for test robustness

Performance fixes:
- Enable concurrent hybrid search with asyncio.gather

Health endpoint improvements:
- Check all dependencies (database, Redis, LLM Gateway)
- Return degraded/unhealthy status based on dependency health
- Updated tests for new health check response structure

All 139 tests pass.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-04 01:18:50 +01:00

1034 lines
34 KiB
Python

"""
Knowledge Base MCP Server.
Provides RAG capabilities with pgvector for semantic search,
intelligent chunking, and collection management.
"""
import inspect
import logging
import re
from contextlib import asynccontextmanager
from typing import Any, get_type_hints
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
from fastmcp import FastMCP
from pydantic import Field
from collection_manager import CollectionManager, get_collection_manager
from collections.abc import AsyncIterator
from config import get_settings
from database import DatabaseManager, get_database_manager
from embeddings import EmbeddingGenerator, get_embedding_generator
from exceptions import ErrorCode, KnowledgeBaseError
from models import (
ChunkType,
DeleteRequest,
FileType,
IngestRequest,
SearchRequest,
SearchType,
)
from search import SearchEngine, get_search_engine
# Input validation patterns
# Allow alphanumeric, hyphens, underscores (1-128 chars)
ID_PATTERN = re.compile(r"^[a-zA-Z0-9_-]{1,128}$")
# Collection names: alphanumeric, hyphens, underscores (1-64 chars)
COLLECTION_PATTERN = re.compile(r"^[a-zA-Z0-9_-]{1,64}$")
def _validate_id(value: str, field_name: str) -> str | None:
"""Validate project_id or agent_id format.
Returns error message if invalid, None if valid.
"""
# Handle FieldInfo objects from direct .fn() calls in tests
if not isinstance(value, str):
return f"{field_name} must be a string"
if not value:
return f"{field_name} is required"
if not ID_PATTERN.match(value):
return f"Invalid {field_name}: must be 1-128 alphanumeric characters, hyphens, or underscores"
return None
def _validate_collection(value: str) -> str | None:
"""Validate collection name format.
Returns error message if invalid, None if valid.
"""
# Handle FieldInfo objects from direct .fn() calls in tests
if not isinstance(value, str):
return None # Non-string means default not resolved, skip validation
if not COLLECTION_PATTERN.match(value):
return "Invalid collection: must be 1-64 alphanumeric characters, hyphens, or underscores"
return None
def _validate_source_path(value: str | None) -> str | None:
"""Validate source_path to prevent path traversal.
Returns error message if invalid, None if valid.
"""
if value is None:
return None
# Handle FieldInfo objects from direct .fn() calls in tests
if not isinstance(value, str):
return None # Non-string means default not resolved, skip validation
# Normalize path and check for traversal attempts
if ".." in value:
return "Invalid source_path: path traversal not allowed"
# Check for null bytes (used in some injection attacks)
if "\x00" in value:
return "Invalid source_path: null bytes not allowed"
# Limit path length to prevent DoS
if len(value) > 4096:
return "Invalid source_path: path too long (max 4096 chars)"
return None
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# Global instances
_database: DatabaseManager | None = None
_embeddings: EmbeddingGenerator | None = None
_search: SearchEngine | None = None
_collections: CollectionManager | None = None
@asynccontextmanager
async def lifespan(_app: FastAPI) -> AsyncIterator[None]:
"""Application lifespan handler."""
global _database, _embeddings, _search, _collections
logger.info("Starting Knowledge Base MCP Server...")
# Initialize database
_database = get_database_manager()
await _database.initialize()
# Initialize embedding generator
_embeddings = get_embedding_generator()
await _embeddings.initialize()
# Initialize search engine
_search = get_search_engine()
# Initialize collection manager
_collections = get_collection_manager()
logger.info("Knowledge Base MCP Server started successfully")
yield
# Cleanup
logger.info("Shutting down Knowledge Base MCP Server...")
if _embeddings:
await _embeddings.close()
if _database:
await _database.close()
logger.info("Knowledge Base MCP Server shut down")
# Create FastMCP server
mcp = FastMCP("syndarix-knowledge-base")
# Create FastAPI app with lifespan
app = FastAPI(
title="Knowledge Base MCP Server",
description="RAG with pgvector for semantic search",
version="0.1.0",
lifespan=lifespan,
)
@app.get("/health")
async def health_check() -> dict[str, Any]:
"""Health check endpoint.
Checks all dependencies: database, Redis cache, and LLM Gateway.
Returns degraded status if any non-critical dependency fails.
Returns unhealthy status if critical dependencies fail.
"""
from datetime import UTC, datetime
status: dict[str, Any] = {
"status": "healthy",
"service": "knowledge-base",
"version": "0.1.0",
"timestamp": datetime.now(UTC).isoformat(),
"dependencies": {},
}
is_degraded = False
is_unhealthy = False
# Check database connection (critical)
try:
if _database and _database._pool:
async with _database.acquire() as conn:
await conn.fetchval("SELECT 1")
status["dependencies"]["database"] = "connected"
else:
status["dependencies"]["database"] = "not initialized"
is_unhealthy = True
except Exception as e:
status["dependencies"]["database"] = f"error: {e}"
is_unhealthy = True
# Check Redis cache (non-critical - degraded without it)
try:
if _embeddings and _embeddings._redis:
await _embeddings._redis.ping()
status["dependencies"]["redis"] = "connected"
else:
status["dependencies"]["redis"] = "not initialized"
is_degraded = True
except Exception as e:
status["dependencies"]["redis"] = f"error: {e}"
is_degraded = True
# Check LLM Gateway connectivity (non-critical for health check)
try:
if _embeddings and _embeddings._http_client:
settings = get_settings()
response = await _embeddings._http_client.get(
f"{settings.llm_gateway_url}/health",
timeout=5.0,
)
if response.status_code == 200:
status["dependencies"]["llm_gateway"] = "connected"
else:
status["dependencies"]["llm_gateway"] = f"unhealthy (status {response.status_code})"
is_degraded = True
else:
status["dependencies"]["llm_gateway"] = "not initialized"
is_degraded = True
except Exception as e:
status["dependencies"]["llm_gateway"] = f"error: {e}"
is_degraded = True
# Set overall status
if is_unhealthy:
status["status"] = "unhealthy"
elif is_degraded:
status["status"] = "degraded"
else:
status["status"] = "healthy"
return status
# Tool registry for JSON-RPC
_tool_registry: dict[str, Any] = {}
def _python_type_to_json_schema(python_type: Any) -> dict[str, Any]:
"""Convert Python type annotation to JSON Schema."""
type_name = getattr(python_type, "__name__", str(python_type))
if python_type is str or type_name == "str":
return {"type": "string"}
elif python_type is int or type_name == "int":
return {"type": "integer"}
elif python_type is float or type_name == "float":
return {"type": "number"}
elif python_type is bool or type_name == "bool":
return {"type": "boolean"}
elif type_name == "NoneType":
return {"type": "null"}
elif hasattr(python_type, "__origin__"):
origin = python_type.__origin__
args = getattr(python_type, "__args__", ())
if origin is list:
item_type = args[0] if args else Any
return {"type": "array", "items": _python_type_to_json_schema(item_type)}
elif origin is dict:
return {"type": "object"}
elif origin is type(None) or str(origin) == "typing.Union":
# Handle Optional types (Union with None)
non_none_args = [a for a in args if a is not type(None)]
if len(non_none_args) == 1:
schema = _python_type_to_json_schema(non_none_args[0])
schema["nullable"] = True
return schema
return {"type": "object"}
return {"type": "object"}
def _get_tool_schema(func: Any) -> dict[str, Any]:
"""Extract JSON Schema from a tool function."""
sig = inspect.signature(func)
hints = get_type_hints(func) if hasattr(func, "__annotations__") else {}
properties: dict[str, Any] = {}
required: list[str] = []
for name, param in sig.parameters.items():
if name in ("self", "cls"):
continue
prop: dict[str, Any] = {}
# Get type from hints
if name in hints:
prop = _python_type_to_json_schema(hints[name])
# Get description and constraints from Field default (FieldInfo object)
default_val = param.default
if hasattr(default_val, "description") and default_val.description:
prop["description"] = default_val.description
if hasattr(default_val, "ge") and default_val.ge is not None:
prop["minimum"] = default_val.ge
if hasattr(default_val, "le") and default_val.le is not None:
prop["maximum"] = default_val.le
# Handle Field default value (check for PydanticUndefined)
if hasattr(default_val, "default"):
field_default = default_val.default
# Check if it's the "required" sentinel (...)
if field_default is not ... and not (
hasattr(field_default, "__class__")
and "PydanticUndefined" in field_default.__class__.__name__
):
prop["default"] = field_default
# Determine if required
if param.default is inspect.Parameter.empty:
required.append(name)
elif hasattr(default_val, "default"):
field_default = default_val.default
# Required if default is ellipsis or PydanticUndefined
if field_default is ... or (
hasattr(field_default, "__class__")
and "PydanticUndefined" in field_default.__class__.__name__
):
required.append(name)
properties[name] = prop
return {
"type": "object",
"properties": properties,
"required": required,
}
def _register_tool(name: str, tool_or_func: Any, description: str | None = None) -> None:
"""Register a tool in the registry.
Handles both raw functions and FastMCP FunctionTool objects.
"""
# Extract the underlying function from FastMCP FunctionTool if needed
if hasattr(tool_or_func, "fn"):
func = tool_or_func.fn
# Use FunctionTool's description if available
if not description and hasattr(tool_or_func, "description") and tool_or_func.description:
description = tool_or_func.description
else:
func = tool_or_func
_tool_registry[name] = {
"func": func,
"description": description or (func.__doc__ or "").strip(),
"schema": _get_tool_schema(func),
}
@app.get("/mcp/tools")
async def list_mcp_tools() -> dict[str, Any]:
"""
Return list of available MCP tools with their schemas.
This endpoint enables tool discovery for the backend MCP client.
"""
tools = []
for name, info in _tool_registry.items():
tools.append({
"name": name,
"description": info["description"],
"inputSchema": info["schema"],
})
return {"tools": tools}
@app.post("/mcp")
async def mcp_rpc(request: Request) -> JSONResponse:
"""
JSON-RPC 2.0 endpoint for MCP tool execution.
Request format:
{
"jsonrpc": "2.0",
"method": "<tool_name>",
"params": {...},
"id": <request_id>
}
Response format:
{
"jsonrpc": "2.0",
"result": {...},
"id": <request_id>
}
"""
try:
body = await request.json()
except Exception as e:
return JSONResponse(
status_code=400,
content={
"jsonrpc": "2.0",
"error": {"code": -32700, "message": f"Parse error: {e}"},
"id": None,
},
)
# Validate JSON-RPC structure
jsonrpc = body.get("jsonrpc")
method = body.get("method")
params = body.get("params", {})
request_id = body.get("id")
if jsonrpc != "2.0":
return JSONResponse(
status_code=400,
content={
"jsonrpc": "2.0",
"error": {"code": -32600, "message": "Invalid Request: jsonrpc must be '2.0'"},
"id": request_id,
},
)
if not method:
return JSONResponse(
status_code=400,
content={
"jsonrpc": "2.0",
"error": {"code": -32600, "message": "Invalid Request: method is required"},
"id": request_id,
},
)
# Look up tool
tool_info = _tool_registry.get(method)
if not tool_info:
return JSONResponse(
status_code=404,
content={
"jsonrpc": "2.0",
"error": {"code": -32601, "message": f"Method not found: {method}"},
"id": request_id,
},
)
# Execute tool
try:
func = tool_info["func"]
# Resolve Field defaults for missing parameters
sig = inspect.signature(func)
resolved_params = dict(params)
for name, param in sig.parameters.items():
if name not in resolved_params:
default_val = param.default
# Check if it's a FieldInfo with a default value
if hasattr(default_val, "default"):
field_default = default_val.default
# Only use if it has an actual default (not required)
if field_default is not ... and not (
hasattr(field_default, "__class__")
and "PydanticUndefined" in field_default.__class__.__name__
):
resolved_params[name] = field_default
result = await func(**resolved_params)
return JSONResponse(
content={
"jsonrpc": "2.0",
"result": result,
"id": request_id,
}
)
except TypeError as e:
return JSONResponse(
status_code=400,
content={
"jsonrpc": "2.0",
"error": {"code": -32602, "message": f"Invalid params: {e}"},
"id": request_id,
},
)
except Exception as e:
logger.error(f"Tool execution error: {e}")
return JSONResponse(
status_code=500,
content={
"jsonrpc": "2.0",
"error": {"code": -32000, "message": f"Server error: {e}"},
"id": request_id,
},
)
# MCP Tools
@mcp.tool()
async def search_knowledge(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"),
query: str = Field(..., description="Search query"),
search_type: str = Field(
default="hybrid",
description="Search type: semantic, keyword, or hybrid",
),
collection: str | None = Field(
default=None,
description="Collection to search (None = all)",
),
limit: int = Field(
default=10,
ge=1,
le=100,
description="Maximum number of results",
),
threshold: float = Field(
default=0.7,
ge=0.0,
le=1.0,
description="Minimum similarity score",
),
file_types: list[str] | None = Field(
default=None,
description="Filter by file types (python, javascript, etc.)",
),
) -> dict[str, Any]:
"""
Search the knowledge base for relevant content.
Supports semantic (vector), keyword (full-text), and hybrid search.
Returns chunks ranked by relevance to the query.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if collection and (error := _validate_collection(collection)):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
# Parse search type
try:
search_type_enum = SearchType(search_type.lower())
except ValueError:
valid_types = [t.value for t in SearchType]
return {
"success": False,
"error": f"Invalid search type: {search_type}. Valid types: {valid_types}",
"code": ErrorCode.INVALID_REQUEST.value,
}
# Parse file types
file_type_enums = None
if file_types:
try:
file_type_enums = [FileType(ft.lower()) for ft in file_types]
except ValueError as e:
return {
"success": False,
"error": f"Invalid file type: {e}",
"code": ErrorCode.INVALID_REQUEST.value,
}
request = SearchRequest(
project_id=project_id,
agent_id=agent_id,
query=query,
search_type=search_type_enum,
collection=collection,
limit=limit,
threshold=threshold,
file_types=file_type_enums,
)
response = await _search.search(request) # type: ignore[union-attr]
return {
"success": True,
"query": response.query,
"search_type": response.search_type,
"results": [
{
"id": r.id,
"content": r.content,
"score": r.score,
"source_path": r.source_path,
"start_line": r.start_line,
"end_line": r.end_line,
"chunk_type": r.chunk_type,
"file_type": r.file_type,
"collection": r.collection,
"metadata": r.metadata,
}
for r in response.results
],
"total_results": response.total_results,
"search_time_ms": response.search_time_ms,
}
except KnowledgeBaseError as e:
logger.error(f"Search error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected search error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
@mcp.tool()
async def ingest_content(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"),
content: str = Field(..., description="Content to ingest"),
source_path: str | None = Field(
default=None,
description="Source file path for reference",
),
collection: str = Field(
default="default",
description="Collection to store in",
),
chunk_type: str = Field(
default="text",
description="Content type: code, markdown, or text",
),
file_type: str | None = Field(
default=None,
description="File type for code chunking (python, javascript, etc.)",
),
metadata: dict[str, Any] | None = Field(
default=None,
description="Additional metadata to store",
),
) -> dict[str, Any]:
"""
Ingest content into the knowledge base.
Content is automatically chunked based on type, embedded using
the LLM Gateway, and stored in pgvector for search.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_collection(collection):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_source_path(source_path):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
# Validate content size to prevent DoS
settings = get_settings()
content_size = len(content.encode("utf-8"))
if content_size > settings.max_document_size:
return {
"success": False,
"error": f"Content size ({content_size} bytes) exceeds maximum allowed ({settings.max_document_size} bytes)",
"code": ErrorCode.INVALID_REQUEST.value,
}
# Parse chunk type
try:
chunk_type_enum = ChunkType(chunk_type.lower())
except ValueError:
valid_types = [t.value for t in ChunkType]
return {
"success": False,
"error": f"Invalid chunk type: {chunk_type}. Valid types: {valid_types}",
"code": ErrorCode.INVALID_REQUEST.value,
}
# Parse file type
file_type_enum = None
if file_type:
try:
file_type_enum = FileType(file_type.lower())
except ValueError:
valid_types = [t.value for t in FileType]
return {
"success": False,
"error": f"Invalid file type: {file_type}. Valid types: {valid_types}",
"code": ErrorCode.INVALID_REQUEST.value,
}
request = IngestRequest(
project_id=project_id,
agent_id=agent_id,
content=content,
source_path=source_path,
collection=collection,
chunk_type=chunk_type_enum,
file_type=file_type_enum,
metadata=metadata or {},
)
result = await _collections.ingest(request) # type: ignore[union-attr]
return {
"success": result.success,
"chunks_created": result.chunks_created,
"embeddings_generated": result.embeddings_generated,
"source_path": result.source_path,
"collection": result.collection,
"chunk_ids": result.chunk_ids,
"error": result.error,
}
except KnowledgeBaseError as e:
logger.error(f"Ingest error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected ingest error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
@mcp.tool()
async def delete_content(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"),
source_path: str | None = Field(
default=None,
description="Delete by source file path",
),
collection: str | None = Field(
default=None,
description="Delete entire collection",
),
chunk_ids: list[str] | None = Field(
default=None,
description="Delete specific chunk IDs",
),
) -> dict[str, Any]:
"""
Delete content from the knowledge base.
Specify either source_path, collection, or chunk_ids to delete.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if collection and (error := _validate_collection(collection)):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_source_path(source_path):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
request = DeleteRequest(
project_id=project_id,
agent_id=agent_id,
source_path=source_path,
collection=collection,
chunk_ids=chunk_ids,
)
result = await _collections.delete(request) # type: ignore[union-attr]
return {
"success": result.success,
"chunks_deleted": result.chunks_deleted,
"error": result.error,
}
except KnowledgeBaseError as e:
logger.error(f"Delete error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected delete error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
@mcp.tool()
async def list_collections(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"), # noqa: ARG001
) -> dict[str, Any]:
"""
List all collections in a project's knowledge base.
Returns collection names with chunk counts and file types.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
result = await _collections.list_collections(project_id) # type: ignore[union-attr]
return {
"success": True,
"project_id": result.project_id,
"collections": [
{
"name": c.name,
"chunk_count": c.chunk_count,
"total_tokens": c.total_tokens,
"file_types": c.file_types,
"created_at": c.created_at.isoformat(),
"updated_at": c.updated_at.isoformat(),
}
for c in result.collections
],
"total_collections": result.total_collections,
}
except KnowledgeBaseError as e:
logger.error(f"List collections error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected list collections error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
@mcp.tool()
async def get_collection_stats(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"), # noqa: ARG001
collection: str = Field(..., description="Collection name"),
) -> dict[str, Any]:
"""
Get detailed statistics for a collection.
Returns chunk counts, token totals, and type breakdowns.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_collection(collection):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
stats = await _collections.get_collection_stats(project_id, collection) # type: ignore[union-attr]
return {
"success": True,
"collection": stats.collection,
"project_id": stats.project_id,
"chunk_count": stats.chunk_count,
"unique_sources": stats.unique_sources,
"total_tokens": stats.total_tokens,
"avg_chunk_size": stats.avg_chunk_size,
"chunk_types": stats.chunk_types,
"file_types": stats.file_types,
"oldest_chunk": stats.oldest_chunk.isoformat() if stats.oldest_chunk else None,
"newest_chunk": stats.newest_chunk.isoformat() if stats.newest_chunk else None,
}
except KnowledgeBaseError as e:
logger.error(f"Get collection stats error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected get collection stats error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
@mcp.tool()
async def update_document(
project_id: str = Field(..., description="Project ID for scoping"),
agent_id: str = Field(..., description="Agent ID making the request"),
source_path: str = Field(..., description="Source file path"),
content: str = Field(..., description="New content"),
collection: str = Field(
default="default",
description="Collection name",
),
chunk_type: str = Field(
default="text",
description="Content type: code, markdown, or text",
),
file_type: str | None = Field(
default=None,
description="File type for code chunking",
),
metadata: dict[str, Any] | None = Field(
default=None,
description="Additional metadata",
),
) -> dict[str, Any]:
"""
Update a document in the knowledge base.
Replaces all existing chunks for the source path with new content.
"""
try:
# Validate inputs
if error := _validate_id(project_id, "project_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_id(agent_id, "agent_id"):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_collection(collection):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
if error := _validate_source_path(source_path):
return {"success": False, "error": error, "code": ErrorCode.INVALID_REQUEST.value}
# Validate content size to prevent DoS
settings = get_settings()
content_size = len(content.encode("utf-8"))
if content_size > settings.max_document_size:
return {
"success": False,
"error": f"Content size ({content_size} bytes) exceeds maximum allowed ({settings.max_document_size} bytes)",
"code": ErrorCode.INVALID_REQUEST.value,
}
# Parse chunk type
try:
chunk_type_enum = ChunkType(chunk_type.lower())
except ValueError:
valid_types = [t.value for t in ChunkType]
return {
"success": False,
"error": f"Invalid chunk type: {chunk_type}. Valid types: {valid_types}",
"code": ErrorCode.INVALID_REQUEST.value,
}
# Parse file type
file_type_enum = None
if file_type:
try:
file_type_enum = FileType(file_type.lower())
except ValueError:
valid_types = [t.value for t in FileType]
return {
"success": False,
"error": f"Invalid file type: {file_type}. Valid types: {valid_types}",
"code": ErrorCode.INVALID_REQUEST.value,
}
result = await _collections.update_document( # type: ignore[union-attr]
project_id=project_id,
agent_id=agent_id,
source_path=source_path,
content=content,
collection=collection,
chunk_type=chunk_type_enum,
file_type=file_type_enum,
metadata=metadata,
)
return {
"success": result.success,
"chunks_created": result.chunks_created,
"embeddings_generated": result.embeddings_generated,
"source_path": result.source_path,
"collection": result.collection,
"chunk_ids": result.chunk_ids,
"error": result.error,
}
except KnowledgeBaseError as e:
logger.error(f"Update document error: {e}")
return {
"success": False,
"error": e.message,
"code": e.code.value,
}
except Exception as e:
logger.error(f"Unexpected update document error: {e}")
return {
"success": False,
"error": str(e),
"code": ErrorCode.INTERNAL_ERROR.value,
}
# Register tools in the JSON-RPC registry
# This must happen after tool functions are defined
_register_tool("search_knowledge", search_knowledge)
_register_tool("ingest_content", ingest_content)
_register_tool("delete_content", delete_content)
_register_tool("list_collections", list_collections)
_register_tool("get_collection_stats", get_collection_stats)
_register_tool("update_document", update_document)
def main() -> None:
"""Run the server."""
import uvicorn
settings = get_settings()
uvicorn.run(
"server:app",
host=settings.host,
port=settings.port,
reload=settings.debug,
log_level="info",
)
if __name__ == "__main__":
main()